背景
在移植某个TP时,发现频繁操作屏幕会导致i2c总线死掉。在跟踪代码的时候,我发现了这个static-key
。
因此,学习一下这块的知识。
reference:
- https://blog.csdn.net/snoopyljc/article/details/89409645
- https://blog.csdn.net/tiantao2012/article/details/53995724
介绍
内核的static-key用来优化if-else频繁判断的问题.
使用
#define DEFINE_STATIC_KEY_FALSE(name)
struct static_key_false name = STATIC_KEY_FALSE_INIT
一般使用DEFINE_STATIC_KEY_FALSE 定义条件不成立的case,用DECLARE_STATIC_KEY_TRUE定义条件成立的case
#define DEFINE_STATIC_KEY_TRUE(name)
struct static_key_true name = STATIC_KEY_TRUE_INIT
例如kernel/sched/core.c
中的定义
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
实际判读的时候,可以用static_branch_likely
和static_branch_unlikely
来判断定义的这个变量表达的条件是否成立.
if (static_branch_likely(&sched_numa_balancing))
return;
原理
首先看定义struct static_key_false name = STATIC_KEY_FALSE_INIT
static_key_false 结构体的定义如下:
#ifdef HAVE_JUMP_LABEL
struct static_key {
atomic_t enabled;
/* Set lsb bit to 1 if branch is default true, 0 ot */
struct jump_entry *entries;
#ifdef CONFIG_MODULES
struct static_key_mod *next;
#endif
};
#else
struct static_key {
atomic_t enabled;
};
#endif /* HAVE_JUMP_LABEL */
可见如果没有定义HAVE_JUMP_LABEL
,则static_key 退化成atomic变量
#define STATIC_KEY_TRUE_INIT (struct static_key_true) { .key = STATIC_KEY_INIT_TRUE, }
#define STATIC_KEY_FALSE_INIT (struct static_key_false){ .key = STATIC_KEY_INIT_FALSE, }
#define STATIC_KEY_INIT_TRUE
{ .enabled = { 1 },
.entries = (void *)JUMP_TYPE_TRUE }
#define STATIC_KEY_INIT_FALSE
{ .enabled = { 0 },
.entries = (void *)JUMP_TYPE_FALSE }
//false和true的主要区别就是enabled 是否为1.
#ifdef HAVE_JUMP_LABEL
#define static_branch_likely(x)
({
bool branch;
if (__builtin_types_compatible_p(typeof(*x), struct static_key_true))
branch = !arch_static_branch(&(x)->key, true);
else if (__builtin_types_compatible_p(typeof(*x), struct static_key_false))
branch = !arch_static_branch_jump(&(x)->key, true);
else
branch = ____wrong_branch_error();
branch;
})
#define static_branch_unlikely(x)
({
bool branch;
if (__builtin_types_compatible_p(typeof(*x), struct static_key_true))
branch = arch_static_branch_jump(&(x)->key, false);
else if (__builtin_types_compatible_p(typeof(*x), struct static_key_false))
branch = arch_static_branch(&(x)->key, false);
else
branch = ____wrong_branch_error();
branch;
})
#else /* !HAVE_JUMP_LABEL */
#define static_branch_likely(x) likely(static_key_enabled(&(x)->key))
#define static_branch_unlikely(x) unlikely(static_key_enabled(&(x)->key))
#endif /* HAVE_JUMP_LABEL */
可见同样依赖HAVE_JUMP_LABEL。如果没有定义的话,直接退化成likely
和unlikely
static_branch_likely
和 static_branch_unlikely
主要是调用arch_static_branch
和arch_static_branch_jump
来判断。
arch_static_branch
表示条件成立,继续执行
例如:
if (static_branch_likely(&sched_numa_balancing))
return;
就直接return了
而arch_static_branch_jump
表示条件不成立,执行跳转。
使用这种机制比likely和unlikely的另外一个好处就是可以动态改变执行的条件
#define static_branch_enable(x) static_key_enable(&(x)->key)
#define static_branch_disable(x) static_key_disable(&(x)->key)
调用static_key_slow_dec 来使key加1
static inline void static_key_enable(struct static_key *key)
{
int count = static_key_count(key);
WARN_ON_ONCE(count < 0 || count > 1);
if (!count)
static_key_slow_inc(key);
}
调用static_key_slow_inc 来使key减1
static inline void static_key_disable(struct static_key *key)
{
int count = static_key_count(key);
WARN_ON_ONCE(count < 0 || count > 1);
if (count)
static_key_slow_dec(key);
}
除了通过static_branch_enable和 static_branch_disable 外,还可以通过static_branch_inc 是判断条件加1,从而是条件成立.反之依然.
#define static_branch_inc(x) static_key_slow_inc(&(x)->key)
#define static_branch_dec(x) static_key_slow_dec(&(x)->key)
总的来说static-key 机制比like/unlikely 灵活,推荐使用。