zoukankan      html  css  js  c++  java
  • Unhappy Hacking II

    标签 : 动态规划


    题目描述

    Sig has built his own keyboard. Designed for ultimate simplicity, this keyboard only has 3 keys on it: the 0 key, the 1 key and the backspace key.
    To begin with, he is using a plain text editor with this keyboard. This editor always displays one string (possibly empty). Just after the editor is launched, this string is empty. When each key on the keyboard is pressed, the following changes occur to the string:
    The 0 key: a letter 0 will be inserted to the right of the string.
    The 1 key: a letter 1 will be inserted to the right of the string.
    The backspace key: if the string is empty, nothing happens. Otherwise, the rightmost letter of the string is deleted.
    Sig has launched the editor, and pressed these keys N times in total. As a result, the editor displays a string s. Find the number of such ways to press the keys, modulo (10^9+7).

    Constraints

    1≤N≤5000
    1≤|s|≤N
    s consists of the letters 0 and 1.
    Partial Score
    400 points will be awarded for passing the test set satisfying 1≤N≤300.

    输入

    The input is given from Standard Input in the following format:
    N
    s

    输出

    Print the number of the ways to press the keys N times in total such that the editor displays the string s in the end, modulo 109+7.

    样例输入

    3
    0

    样例输出

    5

    提示

    We will denote the backspace key by B. The following 5 ways to press the keys will cause the editor to display the string 0 in the end: 00B, 01B, 0B0, 1B0, BB0. In the last way, nothing will happen when the backspace key is pressed.

    分析

    (dp[i][j])来表示,进行了(i)次操作,当前字符串长度为(j)的方法数.在dp[i][j]这个状态下,我们有三种选择

    • 可以按1或0,(dp[i+1][j+1]+=dp[i][j])
    • 或者按退格,(dp[i+1][max(0,j-1)]+=dp[i][j]);

    因为通过dp[i][j]前边的来推导当前不好处理,可以在到达dp[i][j]之前就使用dp[i][j]的前驱更新完毕.

    代码

    expand ```cpp #include #include #include #include using namespace std; typedef long long ll; const int maxn=5050; const ll MOD=1e9+7; const int inf=0x3f3f3f3f; char s[maxn]; int dp[maxn][maxn]; int inv[maxn]; ll Pow(ll x,ll n){ ll ans=1,base=x; while(n){ if(n&1) ans=ans*base%MOD; base=base*base%MOD; n>>=1; } return ans; } int sum[2][maxn]; int main(int argc, char const *argv[]) { inv[0]=1; inv[1]=Pow(2,MOD-2); for (int i = 2; i < maxn; ++i) { inv[i]=(ll)inv[i-1]*inv[1]%MOD; } int n,m; // scanf("%d%d", &n,&m); scanf("%d %s", &n,s+1); m=strlen(s+1); for (int i = 0; i <= n; ++i) { for (int j = 0; j<=i; ++j) { int &u=dp[i][j]; if(i==0&&j==0) u=1; else if(i==0) u=0; else if(i==1&&j==0) u=1; if(j) dp[i+1][j-1]=(dp[i+1][j-1]+u)%MOD; else dp[i+1][j]=(dp[i+1][j]+u)%MOD; dp[i+1][j+1]=(dp[i+1][j+1]+u*2%MOD)%MOD; } } printf("%lld ", (ll)dp[n][m]*inv[m]%MOD); return 0; } ```
  • 相关阅读:
    loaded the "*****" nib but the view outlet was not set 错误的解决办法。
    IBOutlet和IBAction
    initWithNibName 和 loadNibNamed 的区别
    iOS 应用是如何创建的
    Objective C中NULL、Nil、nil、NSNull 的区别
    Objective C数组的内存管理
    XCode 调试1
    META httpequiv 大全
    基于GoogleMap,Mapabc,51ditu,VirtualEarth,YahooMap Api接口的Jquery插件的通用实现(含源代码下载) 转
    SELECT 語法中,如何動態組合查詢條件(转)
  • 原文地址:https://www.cnblogs.com/sciorz/p/9058582.html
Copyright © 2011-2022 走看看