zoukankan      html  css  js  c++  java
  • 1004. Sightseeing Trip

    1004. Sightseeing Trip

    Time limit: 2.0 second Memory limit: 64 MB
    There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place.
    Your task is to write a program which finds such a route. In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y1, …,yk, k > 2. The road yi (1 ≤ i  k − 1) connects crossing points xi and xi+1, the road yk connects crossing points xk and x1. All the numbers x1, …, xk should be different. The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y1) + L(y2) + … + L(yk) where L(yi) is the length of the road yi (1 ≤ i  k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible, because there is no sightseeing route in the town.

    Input

    Input contains a series of tests. The first line of each test contains two positive integers: the number of crossing points N ≤ 100 and the number of roads M ≤ 10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500). Input is ended with a “−1” line.

    Output

    Each line of output is an answer. It contains either a string “No solution.” in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x1 to xk from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

    Sample

    inputoutput
    5 7
    1 4 1
    1 3 300
    3 1 10
    1 2 16
    2 3 100
    2 5 15
    5 3 20
    4 3
    1 2 10
    1 3 20
    1 4 30
    -1
    
    1 3 5 2
    No solution.
    
    Problem Source: Central European Olympiad in Informatics 1999
    ***************************************************************************************
    floyd算法求最小环
    ***************************************************************************************
     1 #include<iostream>
     2 #include<cstring>
     3 #include<string>
     4 #include<cstdio>
     5 #include<cmath>
     6 #include<algorithm>
     7 #include<stack>
     8 using namespace std;
     9 const int N=105;
    10 const int maxn=0xfffffff;
    11 int m[N][N],dis[N][N],g[N][N];
    12 int c,n,ms,i,j,k;
    13 int path[N];
    14 int s,t,w;
    15 void dfs(int x,int y)//找路径
    16  {
    17      if(m[x][y]==-1)return;
    18      dfs(x,m[x][y]);
    19      path[++c]=m[x][y];
    20      dfs(m[x][y],y);
    21  }
    22  int main()
    23  {
    24    while(1)
    25    {
    26       cin>>n;
    27      if(n==-1)break;
    28      cin>>ms;
    29      for(i=0;i<=n;i++)
    30       for(j=0;j<=n;j++)
    31         g[i][j]=maxn;
    32      memset(m,-1,sizeof(m));
    33      for(i=1;i<=ms;i++)
    34      {
    35         cin>>s>>t>>w;
    36         if(g[s][t]>w)
    37           g[s][t]=g[t][s]=w;//求最小边权
    38      }
    39      memcpy(dis,g,sizeof(g));
    40      int min1=maxn;
    41     for(i=1;i<=n;i++)
    42      {
    43          for(j=1;j<i;j++)
    44           for(k=j+1;k<i;k++)
    45            {
    46                if(min1>dis[j][k]+g[j][i]+g[i][k])//求最小环
    47                  {
    48                      min1=dis[j][k]+g[j][i]+g[i][k];
    49                      path[1]=i;
    50                      path[c=2]=j;
    51                      dfs(j,k);
    52                      path[++c]=k;
    53                  }
    54            }
    55            for(j=1;j<=n;j++)//求单边的最短距离
    56             for(k=1;k<=n;k++)
    57              if(dis[j][k]>dis[j][i]+dis[i][k])
    58                 {
    59                     dis[j][k]=dis[k][j]=dis[j][i]+dis[i][k];
    60                     m[j][k]=m[k][j]=i;
    61                 }
    62      }
    63      if(min1==maxn)
    64        printf("No solution.
    ");
    65      else
    66        {
    67            for(i=1;i<c;i++)
    68             printf("%d ",path[i]);
    69            printf("%d
    ",path[c]);
    70        }
    71     }
    72   return 0;
    73  }
    View Code
  • 相关阅读:
    AI boxfilter
    AI AdaBoost算法
    AI Haar特征
    15.VUE学习之-表单中使用key唯一令牌解决表单值混乱问题
    14.VUE学习之-v-if v-else-if语法在网站注册中的实际应用讲解
    13.VUE学习之控制行内样式
    12.2 VUE学习之-if判断,实践加减input里的值
    12.1.VUE学习之-循环li,if判断示例讲解class中应用表达式
    10.VUE学习之使用lodash库减少watch对后台请求的压力
    09.VUE学习之watch监听属性变化实现类百度搜索栏功能ajax异步请求数据,返回字符串
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3253401.html
Copyright © 2011-2022 走看看