zoukankan      html  css  js  c++  java
  • hdu 三部曲 Pie 二分求出最优值,精度很重要

    Problem Description
    My birthday is coming up and traditionally I'm serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This piece can be one whole pie though. 

    My friends are very annoying and if one of them gets a bigger piece than the others, they start complaining. Therefore all of them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size. 

    What is the largest possible piece size all of us can get? All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different.
     

    Input
    One line with a positive integer: the number of test cases. Then for each test case:
    • One line with two integers N and F with 1 ≤ N, F ≤ 10 000: the number of pies and the number of friends.
    • One line with N integers ri with 1 ≤ ri ≤ 10 000: the radii of the pies.
     

    Output
    For each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V. The answer should be given as a floating point number with an absolute error of at most 103.
     

    Sample Input
    3 3 3 4 3 3 1 24 5 10 5 1 4 2 3 4 5 6 5 4 2
     

    Sample Output
    25.1327 3.1416 50.2655
    ******************************************************************************************************************************************************************************************************************************************************
     1 #include<iostream>
     2 #include<string>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<cstdio>
     6 #include<queue>
     7 //#define  PI  3.1415926535897932
     8 using namespace std;
     9 double max(double a,double b)
    10  {
    11      if(a-b>(1e-6))return a;
    12      return b;
    13  }
    14 double PI=acos(-1.0);//pi
    15 double pie[10011];
    16 int n,f,cnt;
    17 int i,j,c;
    18 double  sum,maxn,le,ri;
    19 int main()
    20 {
    21     int cas;
    22     scanf("%d",&cas);
    23     while(cas--)
    24     {
    25         maxn=-1.000000;
    26         sum=0.0000000;
    27         scanf("%d%d",&n,&f);
    28         f++;
    29         for(i=1;i<=n;i++)
    30         {
    31             scanf("%d",&c);
    32             pie[i]=PI*c*c;
    33             maxn=max(pie[i],maxn);
    34             sum+=pie[i];
    35         }
    36         //cout<<maxn<<"  "<<sum<<endl;
    37         le=0;
    38         ri=maxn;
    39         double m;
    40        while(ri-le>=(1e-6))
    41         {
    42             cnt=0;
    43             m=(le+ri)/2;
    44             for(i=1;i<=n;i++)
    45              cnt+=(int)(pie[i]/m);
    46             if(cnt<f)ri=m-(1e-6);//精度控制很重要,注意!@!!
    47             else
    48              le=m;
    49         }
    50       printf("%.4f
    ",le);
    51     }
    52     return 0;
    53 }
    View Code

  • 相关阅读:
    龟兔赛跑(动态规划)
    Dividing (多重背包 搜索)
    第k大值01背包问题
    FATE(完全背包)
    01背包 和 完全背包 详解
    放苹果(动态规划)
    max Sum(简单动态规划)
    连连看 优先对列 应用2
    尺取法
    Square(强大的剪枝)
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3377763.html
Copyright © 2011-2022 走看看