zoukankan      html  css  js  c++  java
  • Frogger dijstra算法

    Problem Description
    Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 
    Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
    To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 
    The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones. 

    You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone. 
     

    Input
    The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.
     

    Output
    For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.
     

    Sample Input
    2 0 0 3 4 3 17 4 19 4 18 5 0
     

    Sample Output
    Scenario #1 Frog Distance = 5.000 Scenario #2 Frog Distance = 1.414
    ***************************************************************************************************************************
    dij
    **************************************************************************************************************************
     1 /*
     2 dijstra算法,更新到2时输出结果
     3 */
     4 #include<iostream>
     5 #include<string>
     6 #include<cstring>
     7 #include<cmath>
     8 #include<cstdio>
     9 #include<queue>
    10 #define  inf  99999999
    11 using namespace std;
    12 double dis[10001];
    13 double map[1001][1001];
    14 int n,i,j,k;
    15 double x[1001],y[1001];
    16 int vis[1001],num;
    17 double  max(double a,double b)
    18  {
    19      if(a>b) return a;
    20      return b;
    21  }
    22 double dist(double x1,double y1,double x2,double y2)
    23 {
    24     return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
    25 }
    26 
    27 void  dijstra()
    28 {
    29     memset(vis,0,sizeof(vis));
    30     for(int it=1;it<=n;it++)
    31      {
    32          dis[it]=map[1][it];
    33          //printf("dis[%d]:%lf
    ",it,dis[it]);
    34      }
    35      vis[1]=1;
    36      int k;
    37      double min1;
    38     for(int it=1;it<n;it++)
    39     {
    40         min1=inf;
    41         for(int jt=1;jt<=n;jt++)
    42         {
    43             if(min1>dis[jt]&&!vis[jt])
    44             {
    45                 min1=dis[jt];
    46                 //cout<<"dis::"<<dis[jt]<<endl;
    47                 k=jt;
    48             }
    49         }
    50          //cout<<"dis::"<<dis[it]<<endl;
    51         //cout<<"k:  "<<k<<endl;
    52         vis[k]=1;
    53         if(k==2)
    54        {
    55         cout<<"Scenario #"<<num<<endl;
    56         cout<<"Frog Distance = ";
    57         printf("%.3f
    
    ",dis[2]);
    58         break;
    59        }
    60 
    61         for(int jt=1;jt<=n;jt++)
    62         {
    63             if(dis[jt]>max(dis[k],map[k][jt])&&!vis[jt])
    64                 dis[jt]=max(dis[k],map[k][jt]);
    65         }
    66     }
    67 
    68 }
    69 int main()
    70 {
    71     num=0;
    72 
    73     while(scanf("%d",&n)&&n)
    74     {
    75         memset(dis,0,sizeof(dis));
    76         for(i=1;i<=n;i++)
    77          for(j=1;j<=n;j++)
    78           map[i][j]=inf;
    79         for(i=1;i<=n;i++)
    80         {
    81             scanf("%lf%lf",&x[i],&y[i]);
    82         }
    83         for(i=1;i<=n;i++)
    84          for(j=1;j<=n;j++)
    85          {
    86             map[i][j]=dist(x[i],y[i],x[j],y[j]);
    87             map[j][i]=map[i][j];
    88             //printf("map[%d][%d]: %lf
    ",i,j,map[i][j]);
    89          }
    90          ++num;
    91          dijstra();
    92     }
    93     return 0;
    94 }
    View Code

  • 相关阅读:
    LeetCode 120:三角形最小路径和
    守护进程
    G711时间戳增量和数据包大小的关系
    H264防止竞争机制
    硬编码帧率错误导致的浏览器不能播放的问题
    GCC inline
    单例模式的双检锁的隐患和优化
    Java中异常捕获子类异常捕获在父类异常前面,即小范围先被捕获
    线程运行流程图
    将二维数组转为稀疏数组
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3378265.html
Copyright © 2011-2022 走看看