zoukankan      html  css  js  c++  java
  • Invade the Mars dijsktra()&&优先队列

    Problem Description
    It's now the year 21XX,when the earth will explode soon.The evil U.S. decided to invade the Mars to save their lives.
    But the childlike Marsmen never keeps any army,because war never take place on the Mars.So it's very convenient for the U.S. to act the action.
    Luckily,the Marsmen find out the evil plan before the invadation,so they formed a defense system.The system provides enchantment for some citys,and the enchantment generator for city A maybe set in city B,and to make things worse,both city B and C and more will provide echantment for city A.
    The satelite of U.S. has got the map of the Mars.And they knows that when they enter a city,they can destory all echantment generator in this city at once,and they can enter a city only if they has destoryed all enchantment generator for this city,but troops can stay at the outside of the city and can enter it at the moment its echantment is destoryed.Of course the U.S. army will face no resistance because the Mars keep no army,so troops can invade in many way at the same time.
    Now the U.S. will invade the Mars,give you the map,your task is to calculate the minimium time to enter the capital of the Mars.
     
    Input
    The first line contains an integer T,which is the number of test cases.
    For each testcase:
    The first line contains two integers N and M,1<=N<=3000,1<=M<=70000,the cities is numbered from 1 to N and the U.S. landed on city 1 while the capital of the Mars is city N.
    The next M lines describes M paths on the Mars.Each line contains three integers ai,bi and wi,indicates there is a unidirectional path form ai to bi lasts wi minutes(1<=wi<=10^8).
    The next N lines describes N citys,the 1+M+i line starts with a integer li,followed with li integers, which is the number of cities has a echantment generator protects city i.
    It's guaranteed that the city N will be always reachable.
     
    Output
    For each case,print a line with a number indicating the minimium time needed to enter the capital of the Mars.
     
    Sample Input
    1
    6 6
    1 2 1
    1 4 3
    2 3 1
    2 5 2
    4 6 2
    5 3 2
    0
    0
    0
    1 3
    0
    2 3 5
     
    Sample Output
    5

    Hint
    The Map is like this:
    We can follow these ways to achieve the fastest speed:
    1->2->3,1->2->5,1->4->6.
     **************************************************************************************************************************
    dijskstra()&&优先队列
    ***************************************************************************************************************************
      1 /*
      2   用优先队列,每一次把度数为0的点和最短路径的点计入队列
      3   最终还是用dijkstra()
      4 */
      5 #include<iostream>
      6 #include<cstdio>
      7 #include<cstring>
      8 #include<string>
      9 #include<algorithm>
     10 #include<map>
     11 #include<queue>
     12 #include<stack>
     13 #include<cmath>
     14 #include<vector>
     15 #define inf 0x3f3f3f3f
     16 #define Inf 0x3FFFFFFFFFFFFFFFLL
     17 #define eps 1e-9
     18 #define pi acos(-1.0)
     19 using namespace std;
     20 typedef long long ll;
     21 const int maxn=3000+10;
     22 const int maxm=70000+10;
     23 struct Edge
     24 {
     25     int v,w,next;
     26 };
     27 struct HeapNode
     28 {
     29     int d,u;
     30     bool operator < (const HeapNode &a) const
     31     {
     32         return d>a.d;
     33     }
     34 };
     35 Edge edges[maxm<<1];
     36 int head[maxn],pro[maxn],nEdge,n,m;
     37 bool vis[maxn];
     38 ll d[maxn],dt[maxn];
     39 vector<int>lim[maxn];
     40 void AddEdge(int u,int v,int w)
     41 {
     42     nEdge++;
     43     edges[nEdge].v=v;
     44     edges[nEdge].w=w;
     45     edges[nEdge].next=head[u];
     46     head[u]=nEdge;
     47 }
     48 void Init()
     49 {
     50     for(int i=0;i<=n;++i) lim[i].clear();
     51     memset(head,0xff,sizeof(head));
     52     memset(dt,0,sizeof(dt));
     53     memset(pro,0,sizeof(pro));
     54     memset(vis,0,sizeof(vis));
     55     nEdge=-1;
     56 }
     57 void dijkstra()
     58 {
     59     for(int i=1;i<=n;++i) d[i]=Inf;
     60     d[1]=0;
     61     priority_queue<HeapNode>q;
     62     HeapNode hp;
     63     hp.d=0;hp.u=1;
     64     q.push(hp);
     65     int u,v,sz;
     66     while(!q.empty())
     67     {
     68         hp=q.top();q.pop();
     69         u=hp.u;
     70         if(vis[u]) continue;
     71         vis[u]=true;
     72         sz=lim[u].size();
     73         for(int i=0;i<sz;++i)
     74         {
     75             v=lim[u][i];
     76             pro[v]--;
     77             dt[v]=max(dt[v],d[u]);
     78             if(pro[v]==0&&d[v]!=Inf)
     79             {
     80                 d[v]=max(dt[v],d[v]);
     81                 hp.u=v;hp.d=d[v];
     82                 q.push(hp);
     83             }
     84         }
     85         for(int k=head[u];k!=-1;k=edges[k].next)
     86         {
     87             v=edges[k].v;
     88             if(d[v]>d[u]+edges[k].w)
     89             {
     90                 d[v]=max(d[u]+edges[k].w,dt[v]);
     91                 hp.u=v;hp.d=d[v];
     92                 if(pro[v]==0) q.push(hp);
     93             }
     94         }
     95     }
     96 }
     97 int main()
     98 {
     99     int t;
    100     scanf("%d",&t);
    101     while(t--)
    102     {
    103         scanf("%d%d",&n,&m);
    104         Init();
    105         int u,v,w;
    106         for(int i=0;i<m;++i)
    107         {
    108             scanf("%d%d%d",&u,&v,&w);
    109             AddEdge(u,v,w);
    110         }
    111         for(int i=1;i<=n;++i)
    112         {
    113             scanf("%d",&u);
    114             pro[i]=u;
    115             while(u--)
    116             {
    117                 scanf("%d",&v);
    118                 lim[v].push_back(i);
    119             }
    120         }
    121         dijkstra();
    122         printf("%I64d
    ",d[n]);
    123     }
    124     return 0;
    125 }
    View Code
  • 相关阅读:
    2017 ACM-ICPC 沈阳区域赛记录
    TopCoder SRM 701 Div2 Problem 900 ThueMorseGame(博弈+预处理)
    SPOJ LIS2
    Codeforces 696E ...Wait for it...(树链剖分)
    Codeforces 868F Yet Another Minimization Problem(分治+莫队优化DP)
    Flask视图之CBV示列
    Flask内的特殊装饰器
    Flask蓝图
    Flask常用实列化参数
    Flask常用路由参数
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3432315.html
Copyright © 2011-2022 走看看