zoukankan      html  css  js  c++  java
  • Invade the Mars dijsktra()&&优先队列

    Problem Description
    It's now the year 21XX,when the earth will explode soon.The evil U.S. decided to invade the Mars to save their lives.
    But the childlike Marsmen never keeps any army,because war never take place on the Mars.So it's very convenient for the U.S. to act the action.
    Luckily,the Marsmen find out the evil plan before the invadation,so they formed a defense system.The system provides enchantment for some citys,and the enchantment generator for city A maybe set in city B,and to make things worse,both city B and C and more will provide echantment for city A.
    The satelite of U.S. has got the map of the Mars.And they knows that when they enter a city,they can destory all echantment generator in this city at once,and they can enter a city only if they has destoryed all enchantment generator for this city,but troops can stay at the outside of the city and can enter it at the moment its echantment is destoryed.Of course the U.S. army will face no resistance because the Mars keep no army,so troops can invade in many way at the same time.
    Now the U.S. will invade the Mars,give you the map,your task is to calculate the minimium time to enter the capital of the Mars.
     
    Input
    The first line contains an integer T,which is the number of test cases.
    For each testcase:
    The first line contains two integers N and M,1<=N<=3000,1<=M<=70000,the cities is numbered from 1 to N and the U.S. landed on city 1 while the capital of the Mars is city N.
    The next M lines describes M paths on the Mars.Each line contains three integers ai,bi and wi,indicates there is a unidirectional path form ai to bi lasts wi minutes(1<=wi<=10^8).
    The next N lines describes N citys,the 1+M+i line starts with a integer li,followed with li integers, which is the number of cities has a echantment generator protects city i.
    It's guaranteed that the city N will be always reachable.
     
    Output
    For each case,print a line with a number indicating the minimium time needed to enter the capital of the Mars.
     
    Sample Input
    1
    6 6
    1 2 1
    1 4 3
    2 3 1
    2 5 2
    4 6 2
    5 3 2
    0
    0
    0
    1 3
    0
    2 3 5
     
    Sample Output
    5

    Hint
    The Map is like this:
    We can follow these ways to achieve the fastest speed:
    1->2->3,1->2->5,1->4->6.
     **************************************************************************************************************************
    dijskstra()&&优先队列
    ***************************************************************************************************************************
      1 /*
      2   用优先队列,每一次把度数为0的点和最短路径的点计入队列
      3   最终还是用dijkstra()
      4 */
      5 #include<iostream>
      6 #include<cstdio>
      7 #include<cstring>
      8 #include<string>
      9 #include<algorithm>
     10 #include<map>
     11 #include<queue>
     12 #include<stack>
     13 #include<cmath>
     14 #include<vector>
     15 #define inf 0x3f3f3f3f
     16 #define Inf 0x3FFFFFFFFFFFFFFFLL
     17 #define eps 1e-9
     18 #define pi acos(-1.0)
     19 using namespace std;
     20 typedef long long ll;
     21 const int maxn=3000+10;
     22 const int maxm=70000+10;
     23 struct Edge
     24 {
     25     int v,w,next;
     26 };
     27 struct HeapNode
     28 {
     29     int d,u;
     30     bool operator < (const HeapNode &a) const
     31     {
     32         return d>a.d;
     33     }
     34 };
     35 Edge edges[maxm<<1];
     36 int head[maxn],pro[maxn],nEdge,n,m;
     37 bool vis[maxn];
     38 ll d[maxn],dt[maxn];
     39 vector<int>lim[maxn];
     40 void AddEdge(int u,int v,int w)
     41 {
     42     nEdge++;
     43     edges[nEdge].v=v;
     44     edges[nEdge].w=w;
     45     edges[nEdge].next=head[u];
     46     head[u]=nEdge;
     47 }
     48 void Init()
     49 {
     50     for(int i=0;i<=n;++i) lim[i].clear();
     51     memset(head,0xff,sizeof(head));
     52     memset(dt,0,sizeof(dt));
     53     memset(pro,0,sizeof(pro));
     54     memset(vis,0,sizeof(vis));
     55     nEdge=-1;
     56 }
     57 void dijkstra()
     58 {
     59     for(int i=1;i<=n;++i) d[i]=Inf;
     60     d[1]=0;
     61     priority_queue<HeapNode>q;
     62     HeapNode hp;
     63     hp.d=0;hp.u=1;
     64     q.push(hp);
     65     int u,v,sz;
     66     while(!q.empty())
     67     {
     68         hp=q.top();q.pop();
     69         u=hp.u;
     70         if(vis[u]) continue;
     71         vis[u]=true;
     72         sz=lim[u].size();
     73         for(int i=0;i<sz;++i)
     74         {
     75             v=lim[u][i];
     76             pro[v]--;
     77             dt[v]=max(dt[v],d[u]);
     78             if(pro[v]==0&&d[v]!=Inf)
     79             {
     80                 d[v]=max(dt[v],d[v]);
     81                 hp.u=v;hp.d=d[v];
     82                 q.push(hp);
     83             }
     84         }
     85         for(int k=head[u];k!=-1;k=edges[k].next)
     86         {
     87             v=edges[k].v;
     88             if(d[v]>d[u]+edges[k].w)
     89             {
     90                 d[v]=max(d[u]+edges[k].w,dt[v]);
     91                 hp.u=v;hp.d=d[v];
     92                 if(pro[v]==0) q.push(hp);
     93             }
     94         }
     95     }
     96 }
     97 int main()
     98 {
     99     int t;
    100     scanf("%d",&t);
    101     while(t--)
    102     {
    103         scanf("%d%d",&n,&m);
    104         Init();
    105         int u,v,w;
    106         for(int i=0;i<m;++i)
    107         {
    108             scanf("%d%d%d",&u,&v,&w);
    109             AddEdge(u,v,w);
    110         }
    111         for(int i=1;i<=n;++i)
    112         {
    113             scanf("%d",&u);
    114             pro[i]=u;
    115             while(u--)
    116             {
    117                 scanf("%d",&v);
    118                 lim[v].push_back(i);
    119             }
    120         }
    121         dijkstra();
    122         printf("%I64d
    ",d[n]);
    123     }
    124     return 0;
    125 }
    View Code
  • 相关阅读:
    用例输入单元测试(3)参数化测试方法
    线程文件[MFC]线程优先级设置,下拉列表框ComboBox,复选框CButton,列表框CListBox的使用
    设置系统SetLocalTime设置系统时间
    页面错误毕业设计之错误集锦(六)
    定义数据类型SQL server中SET ANSI_PADDING对char、varchar、nvarchar的影响
    查找关键字算法:静态查找表(Static Search Table)
    密码注册ASP.NET实现忘记密码
    卡函数or1200基于simplespi的SD卡驱动
    目的地返回POJ 2336 动态规划(DP) Ferry Loading II
    坐标序列hdu 1003 解题报告 Max Sum
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3432315.html
Copyright © 2011-2022 走看看