zoukankan      html  css  js  c++  java
  • hdu Frequent values (线段树 求最值)

    Problem Description

    You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.

     
    Input

    The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the 
    query.

    The last test case is followed by a line containing a single 0.

     
    Output

    For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.

     
    Sample Input
    10 3 -1 -1 1 1 1 1 3 10 10 10 2 3 1 10 5 10 0
     
    Sample Output
    1 4 3
    **************************************************************************************************************************
    先说题意:
    给定一个非降的数列,以下有Q个询问,每个询问给定一个区间的首尾标号,求这个区间中,出现次数最多的数字个数。
    典型的线段树,求区间内的最值
    **************************************************************************************************************************
      1 #include <iostream>
      2 #include <string>
      3 #include <cstring>
      4 #include <cmath>
      5 #include <queue>
      6 #include <cstdio>
      7 #define MAX 100050
      8 #define INF 0X7FFFFFFFF
      9 #define LL long long
     10 #define mem(a,b) memset(a,b,sizeof(a))
     11 #define L(x) x<<1
     12 #define R(x) x<<1|1
     13 using namespace std;
     14 int data[MAX],vis[MAX],maxx;
     15 int n,i,j,k,q;
     16 struct node
     17 {
     18     int le,ri,mid,value;
     19 }tree[4*MAX];
     20 
     21 struct point
     22 {
     23     int st,en;
     24 }cnt[MAX];
     25 void up(int num)
     26 {
     27     tree[num].value=max(tree[L(num)].value,tree[R(num)].value);
     28 }
     29 void build(int le,int ri,int root)
     30 {
     31     tree[root].le=le;
     32     tree[root].ri=ri;
     33     tree[root].mid=(le+ri)>>1;
     34     if(le==ri)
     35     {
     36         tree[root].value=cnt[le].en-cnt[le].st+1;
     37         return;
     38     }
     39     build(le,tree[root].mid,L(root));
     40     build(tree[root].mid+1,ri,R(root));
     41     up(root);
     42 }
     43 
     44 int query(int le,int ri,int root)
     45 {
     46     if(le<=tree[root].le&&tree[root].ri<=ri)
     47         return tree[root].value;
     48     if(le>tree[root].mid)
     49         return query(le,ri,R(root));
     50     else
     51         if(ri<=tree[root].mid)
     52           return query(le,ri,L(root));
     53     else
     54     {
     55         return max(query(le,tree[root].mid,L(root)),query(tree[root].mid+1,ri,R(root)));
     56     }
     57 }
     58 
     59 int main()
     60 {
     61 
     62    while(scanf("%d",&n)==1)
     63    {
     64        if(n==0)
     65         break;
     66         scanf("%d",&q);
     67        for(i=1;i<=n;i++)
     68         scanf("%d",&data[i]);
     69        memset(vis,0,sizeof(vis));
     70        int t=1;
     71        vis[1]=t;
     72        cnt[t].st=1;
     73        if(n==1)
     74         cnt[t].en=1;
     75        for(i=2;i<=n;i++)
     76        {
     77           if(data[i]!=data[i-1])
     78           {
     79               cnt[t].en=i-1;
     80               t++;
     81               cnt[t].st=i;
     82               vis[i]=t;
     83           }
     84           else
     85             vis[i]=t;
     86        }
     87        vis[n]=t;
     88        cnt[t].en=n;
     89        build(1,t,1);
     90        int a,b;
     91        for(i=1;i<=q;i++)
     92        {
     93            scanf("%d%d",&a,&b);
     94            if(vis[a]==vis[b])
     95            {
     96                printf("%d
    ",b-a+1);
     97                continue;
     98            }
     99            if(vis[b]-vis[a]==1)
    100            {
    101                printf("%d
    ",max(cnt[vis[a]].en-a+1,b-cnt[vis[b]].st+1));
    102                continue;
    103            }
    104            int p=max(cnt[vis[a]].en-a+1,b-cnt[vis[b]].st+1);
    105            printf("%d
    ",max(p,query(vis[a]+1,vis[b]-1,1)));
    106        }
    107     }
    108 }
    View Code
  • 相关阅读:
    [android] 实现返回键操作思路
    [android] 切换界面的问题
    [android] 切换界面的通用处理
    [android] 界面切换的简单动画
    [android] 界面切换的核心方法
    [android] 标题部分管理
    [android] 界面的划分
    [android] socket在手机上的应用
    [android] 网络链接类型和渠道
    [android] android通信协议
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3527249.html
Copyright © 2011-2022 走看看