zoukankan      html  css  js  c++  java
  • Lp空间

    在数学中,Lp空间是由p次可积函数组成的空间;对应的p空间是由p次可和序列组成的空间。它们有时叫做勒贝格空间,以昂利·勒贝格命名(Dunford & Schwartz 1958,III.3),尽管依据Bourbaki (1987)它们是Riesz (1910)首先介入。在泛函分析和拓扑向量空间中,他们构成了巴拿赫空间一类重要的例子。

    Lp空间在工程学领域的有限元分析中有应用。


    Relations between p-norms

    The grid distance or rectilinear distance (sometimes called the "Manhattan distance") between two points is never shorter than the length of the line segment between them (the Euclidean or "as the crow flies" distance). Formally, this means that the Euclidean norm of any vector is bounded by its 1-norm:

    ${displaystyle left|x ight|_{2}leq left|x ight|_{1}.}$
    {displaystyle left|x
ight|_{2}leq left|x
ight|_{1}.}

    This fact generalizes to p-norms in that the p-norm ||x||p of any given vector x does not grow with p:

    ||x||p+a ≤ ||x||p for any vector x and real numbers p ≥ 1 and a ≥ 0. (In fact this remains true for 0 < p < 1 and a ≥ 0.)

    For the opposite direction, the following relation between the 1-norm and the 2-norm is known:

    ${displaystyle left|x ight|_{1}leq {sqrt {n}}left|x ight|_{2}.}$
    {displaystyle left|x
ight|_{1}leq {sqrt {n}}left|x
ight|_{2}.}

    This inequality depends on the dimension n of the underlying vector space and follows directly from the Cauchy–Schwarz inequality.

    In general, for vectors in Cn where 0 < r < p:

    ${displaystyle left|x ight|_{p}leq left|x ight|_{r}leq n^{(1/r-1/p)}left|x ight|_{p}.}$
    {displaystyle left|x
ight|_{p}leq left|x
ight|_{r}leq n^{(1/r-1/p)}left|x
ight|_{p}.}
  • 相关阅读:
    第一次项目总结
    8.16 CSS知识点7
    2016y9m22d 博文分享
    2016y9m8d
    2016y9m7d
    2016y9m6d
    2016y9m5d
    2016.9.2博文分享!
    2016y8m16d
    2016y8m15d
  • 原文地址:https://www.cnblogs.com/sddai/p/10050953.html
Copyright © 2011-2022 走看看