zoukankan      html  css  js  c++  java
  • Lp空间

    在数学中,Lp空间是由p次可积函数组成的空间;对应的p空间是由p次可和序列组成的空间。它们有时叫做勒贝格空间,以昂利·勒贝格命名(Dunford & Schwartz 1958,III.3),尽管依据Bourbaki (1987)它们是Riesz (1910)首先介入。在泛函分析和拓扑向量空间中,他们构成了巴拿赫空间一类重要的例子。

    Lp空间在工程学领域的有限元分析中有应用。


    Relations between p-norms

    The grid distance or rectilinear distance (sometimes called the "Manhattan distance") between two points is never shorter than the length of the line segment between them (the Euclidean or "as the crow flies" distance). Formally, this means that the Euclidean norm of any vector is bounded by its 1-norm:

    ${displaystyle left|x ight|_{2}leq left|x ight|_{1}.}$
    {displaystyle left|x
ight|_{2}leq left|x
ight|_{1}.}

    This fact generalizes to p-norms in that the p-norm ||x||p of any given vector x does not grow with p:

    ||x||p+a ≤ ||x||p for any vector x and real numbers p ≥ 1 and a ≥ 0. (In fact this remains true for 0 < p < 1 and a ≥ 0.)

    For the opposite direction, the following relation between the 1-norm and the 2-norm is known:

    ${displaystyle left|x ight|_{1}leq {sqrt {n}}left|x ight|_{2}.}$
    {displaystyle left|x
ight|_{1}leq {sqrt {n}}left|x
ight|_{2}.}

    This inequality depends on the dimension n of the underlying vector space and follows directly from the Cauchy–Schwarz inequality.

    In general, for vectors in Cn where 0 < r < p:

    ${displaystyle left|x ight|_{p}leq left|x ight|_{r}leq n^{(1/r-1/p)}left|x ight|_{p}.}$
    {displaystyle left|x
ight|_{p}leq left|x
ight|_{r}leq n^{(1/r-1/p)}left|x
ight|_{p}.}
  • 相关阅读:
    显示等待WebDriverWait+EC
    mac 上查看python3的各种安装路径
    layui弹窗全屏显示
    Mysql 一些细节方面解析(一)--MyISAM和InnoDB的主要区别和应用场景
    命令关闭tomcat
    xml 写sql语句文件头
    mysql update 修改多个字段and的语法问题
    zookeeper安装
    Java 基础--移位运算符
    SQL mybatis动态查询小结
  • 原文地址:https://www.cnblogs.com/sddai/p/10050953.html
Copyright © 2011-2022 走看看