zoukankan      html  css  js  c++  java
  • Lp空间

    在数学中,Lp空间是由p次可积函数组成的空间;对应的p空间是由p次可和序列组成的空间。它们有时叫做勒贝格空间,以昂利·勒贝格命名(Dunford & Schwartz 1958,III.3),尽管依据Bourbaki (1987)它们是Riesz (1910)首先介入。在泛函分析和拓扑向量空间中,他们构成了巴拿赫空间一类重要的例子。

    Lp空间在工程学领域的有限元分析中有应用。


    Relations between p-norms

    The grid distance or rectilinear distance (sometimes called the "Manhattan distance") between two points is never shorter than the length of the line segment between them (the Euclidean or "as the crow flies" distance). Formally, this means that the Euclidean norm of any vector is bounded by its 1-norm:

    ${displaystyle left|x ight|_{2}leq left|x ight|_{1}.}$
    {displaystyle left|x
ight|_{2}leq left|x
ight|_{1}.}

    This fact generalizes to p-norms in that the p-norm ||x||p of any given vector x does not grow with p:

    ||x||p+a ≤ ||x||p for any vector x and real numbers p ≥ 1 and a ≥ 0. (In fact this remains true for 0 < p < 1 and a ≥ 0.)

    For the opposite direction, the following relation between the 1-norm and the 2-norm is known:

    ${displaystyle left|x ight|_{1}leq {sqrt {n}}left|x ight|_{2}.}$
    {displaystyle left|x
ight|_{1}leq {sqrt {n}}left|x
ight|_{2}.}

    This inequality depends on the dimension n of the underlying vector space and follows directly from the Cauchy–Schwarz inequality.

    In general, for vectors in Cn where 0 < r < p:

    ${displaystyle left|x ight|_{p}leq left|x ight|_{r}leq n^{(1/r-1/p)}left|x ight|_{p}.}$
    {displaystyle left|x
ight|_{p}leq left|x
ight|_{r}leq n^{(1/r-1/p)}left|x
ight|_{p}.}
  • 相关阅读:
    插入排序实现
    冒泡排序的实现
    选择排序的实现方法
    实现文字的竖排
    一个实体类的定义
    将字符串中的非字母数字,转化为ascii码输出
    根据员工入职时间和合同期计算下一次合同签订时间
    centos安装java的问题解决
    弓箭射小人
    Nature & Science 20102011年全部期刊下载链接
  • 原文地址:https://www.cnblogs.com/sddai/p/10050953.html
Copyright © 2011-2022 走看看