解题思路
如果区间内没有(1),那么答案就为(1),从这一点继续归纳。如果区间内有(x)个(1),设区间内([2,x+1])的和为(sum),如果(sum=0),那么答案为(x+1),否则([1,x+sum])中的所有数字一定可以被表示,然后这个操作每次使答案至少扩大(1)倍,再用一个主席树维护,时间复杂度(O(nlognlogA))
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=100005;
const int M=N*33;
const int inf=1000000000;
typedef long long LL;
template<class T> void rd(T &x){
x=0;char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
}
int n,m,a[N],rt[N],ls[M],rs[M],sum[M],cnt;
LL Sum[M];
void build(int &x,int l,int r,int k){
x=++cnt;
if(l==r) {sum[x]=1;Sum[x]=l;return ;}
int mid=(l+r)>>1;
if(k<=mid) build(ls[x],l,mid,k);
else build(rs[x],mid+1,r,k);
Sum[x]=Sum[ls[x]]+Sum[rs[x]];
}
void update(int pre,int &x,int l,int r,int k){
x=++cnt;ls[x]=ls[pre];rs[x]=rs[pre];
if(l==r) {sum[x]=sum[pre]+1;Sum[x]=Sum[pre]+l;return;}int mid=(l+r)>>1;
if(k<=mid) update(ls[pre],ls[x],l,mid,k);
else update(rs[pre],rs[x],mid+1,r,k);
Sum[x]=Sum[ls[x]]+Sum[rs[x]];
}
int query_tot(int u,int v,int l,int r,int k){
if(l==r) return sum[v]-sum[u];
int mid=(l+r)>>1;
if(k<=mid) return query_tot(ls[u],ls[v],l,mid,k);
else return query_tot(rs[u],rs[v],mid+1,r,k);
}
LL query_sum(int u,int v,int l,int r,int L,int R){
if(L<=l && r<=R) return Sum[v]-Sum[u];
int mid=(l+r)>>1;LL ret=0;
if(L<=mid) ret+=query_sum(ls[u],ls[v],l,mid,L,R);
if(mid<R) ret+=query_sum(rs[u],rs[v],mid+1,r,L,R);
return ret;
}
int main(){
rd(n);rd(a[1]);build(rt[1],1,inf,a[1]);
for(int i=2;i<=n;i++)
rd(a[i]),update(rt[i-1],rt[i],1,inf,a[i]);
rd(m);int l,r,now,k,tot,lst;
while(m--){
rd(l),rd(r);k=0;lst=0;
while(1){
now=query_sum(rt[l-1],rt[r],1,inf,lst,k+1);
if(!now) break;lst=k+2;k=now+k;
}
printf("%d
",k+1);
}
return 0;
}