解题思路
首先第一遍dfs预处理出每个点的子树的siz,然后可以处理出放在根节点的答案,然后递推可得其他答案,递推方程 sum[u]=sum[x]-(val[i]*siz[u])+(siz[1]-siz[u])*val[i]
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
const int MAXN = 100005;
typedef long long LL;
inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {f=ch=='-'?0:1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f?x:-x;
}
LL ans,sum[MAXN],all[MAXN];
int siz[MAXN],n,head[MAXN],cnt,to[MAXN<<1],nxt[MAXN<<1],val[MAXN<<1];
inline void add(int bg,int ed,int w){
to[++cnt]=ed,nxt[cnt]=head[bg],val[cnt]=w,head[bg]=cnt;
}
void dfs1(int x,int fa,int d){
all[x]=(LL)siz[x]*d;
for(register int i=head[x];i;i=nxt[i]){
int u=to[i];if(u==fa) continue;
dfs1(u,x,d+val[i]);
siz[x]+=siz[u];all[x]+=all[u];
}
}
void dfs2(int x,int fa){
for(register int i=head[x];i;i=nxt[i]){
int u=to[i];if(u==fa) continue;
sum[u]=sum[x]-((LL)siz[u]*val[i])+(LL)(siz[1]-siz[u])*val[i];
ans=min(ans,sum[u]);
dfs2(u,x);
}
}
int main(){
n=rd();int x,y,z;
for(int i=1;i<=n;i++) siz[i]=rd();
for(int i=1;i<n;i++){
x=rd(),y=rd(),z=rd();
add(x,y,z),add(y,x,z);
}
dfs1(1,0,0);ans=sum[1]=all[1];dfs2(1,0);
cout<<ans<<endl;
return 0;
}