Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______
/
___5__ ___1__
/ /
6 _2 0 8
/
7 4
For example, the lowest common ancestor (LCA) of nodes 5
and 1
is 3
. Another example is LCA of nodes 5
and 4
is 5
, since a node can be a descendant of itself according to the LCA definition.
Subscribe to see which companies asked this question
非递归实现:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if (root == nullptr) return root; stack<TreeNode*> sta; vector<TreeNode*> vec; bool tag1 = false; bool tag2 = false; sta.push(root); TreeNode* lastRoot = root; while (!sta.empty()) { root = sta.top(); if (root == p) { if(tag1 == false && tag2 == false) vec.push_back(root); tag1 = true; } else if (root == q) { if (tag2 == false && tag1 == false) vec.push_back(root); tag2 = true; } if (!tag1 && !tag2) vec.push_back(root); if (tag1 && tag2 && find(vec.begin(), vec.end(), root) != vec.end()) return root; if (lastRoot != root->right) { if (lastRoot != root->left) { if (root->left != nullptr) { sta.push(root->left); continue; } } if (root->right != nullptr) { sta.push(root->right); continue; } } lastRoot = root; sta.pop(); } return nullptr; }
递归实现:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if (!root || root == p || root == q) return root; TreeNode* l = lowestCommonAncestor(root->left, p, q); TreeNode* r = lowestCommonAncestor(root->right, p, q); return l && r ? root : l ? l : r; }