zoukankan      html  css  js  c++  java
  • 从头学pytorch(十五):AlexNet

    AlexNet

    AlexNet是2012年提出的一个模型,并且赢得了ImageNet图像识别挑战赛的冠军.首次证明了由计算机自动学习到的特征可以超越手工设计的特征,对计算机视觉的研究有着极其重要的意义.

    AlexNet的设计思路和LeNet是非常类似的.不同点主要有以下几点:

    • 激活函数由sigmoid改为Relu
    • AlexNet使用了dropout,LeNet没有使用
    • AlexNet引入了大量的图像增广,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合

    激活函数

    relu

    [ ext{ReLU}(x) = max(x, 0). ]

    其曲线及导数的曲线图绘制如下:

    sigmoid

    其曲线及导数的曲线图绘制如下:

    [ ext{sigmoid}(x) = frac{1}{1 + exp(-x)}. ]


    relu的好处主要有两点:

    • 计算更简单,没有了指数运算
    • 在正数区间,梯度恒定为1,而sigmoid在接近0和1时,梯度几乎为0,会导致模型参数更新极为缓慢

    现在大多模型激活函数都选择Relu了.

    模型结构

    AlexNet结构如下:

    早期的硬件设备计算能力不足,所以上面的图分成了两部分,把不同部分的计算分散到不同的gpu上去,现在已经完全没有这种必要了.比如第一个卷积层的channel是48 x 2 = 96个.

    细化的结构图:

    根据上图,我们来写模型的定义:
    首先,用一个11 x 11的卷积核,对224 x 224的输入,卷积后得到55 x 55 x 96的输出.
    由于我们的图片是单通道的,那么我们有代码:

    nn.Conv2d(1, 96, kernel_size=11, stride=4)
    

    然而,我们测试一下他的输出.

    X=torch.randn((1,1,224,224)) #batch x c x h x w
    net = nn.Conv2d(1, 96, kernel_size=11, stride=4)
    out = net(X)
    print(out.shape)
    

    输出

    torch.Size([1, 96, 54, 54])
    

    我们将代码修改为

    nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2)
    

    再用相同的代码测试输出

    X=torch.randn((1,1,224,224)) #batch x c x h x w
    net = nn.Conv2d(1, 96, kernel_size=11, stride=4,padding=2)
    out = net(X)
    print(out.shape)
    

    输出

    torch.Size([1, 96, 55, 55])
    

    由此可见,第一个卷积层的实现应该是

    nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2)
    

    搜索pytorch的padding策略,https://blog.csdn.net/g11d111/article/details/82665265基本都是抄这篇的,这篇里指出

     显然,padding=1的效果是:原来的输入层基础上,上下左右各补了一行!

    然而实测和文章中的描述不一致.

    net = nn.Conv2d(1, 1, 3,padding=0)
    X= torch.randn((1,1,5,5))
    print(X)
    out=net(X)
    print(out)
    
    net2 = nn.Conv2d(1, 1, 3,padding=1)
    out=net(X)
    print(out)
    

    输出

    tensor([[[[-2.3052,  0.7220,  0.3106,  0.0605, -0.8304],
              [-0.0831,  0.0168, -0.9227,  2.2891,  0.6738],
              [-0.7871, -0.2234, -0.2356,  0.2500,  0.8389],
              [ 0.7070,  1.1909,  0.2963, -0.7580,  0.1535],
              [ 1.0306, -1.1829,  3.1201,  1.0544,  0.3521]]]])
    tensor([[[[-0.1129,  0.7711, -0.6452],
              [-0.3387,  0.1025,  0.3039],
              [ 0.1604,  0.2709,  0.0740]]]], grad_fn=<MkldnnConvolutionBackward>)
    tensor([[[[-0.1129,  0.7711, -0.6452],
              [-0.3387,  0.1025,  0.3039],
              [ 0.1604,  0.2709,  0.0740]]]], grad_fn=<MkldnnConvolutionBackward>)
    

    到目前,我也没有把torch的padding策略搞清楚.知道的同学请评论留言.我的torch版本是1.2.0

    AlexNet的激活函数采用的是Relu,所以

    nn.ReLU(inplace=True)
    

    接下来用一个3 x 3的卷积核去做最大池化,步幅为2,得到[27,27,96]的输出

    nn.MaxPool2d(kernel_size=3, stride=2)
    

    我们测试一下:

    X=torch.randn((1,1,224,224)) #batch x c x h x w
    net = nn.Sequential(
        nn.Conv2d(1, 96, kernel_size=11, stride=4,padding=2),
        nn.ReLU(),
        nn.MaxPool2d(kernel_size=3,stride=2)
    )
    out = net(X)
    print(out.shape)
    

    输出

    torch.Size([1, 96, 27, 27])
    

    至此,一个基本的卷积单元的定义就完成了,包括卷积,激活,池化.类似的,我们可以写出后续各层的定义.

    AlexNet有5个卷积层,第一个卷积层的卷积核大小为11x11,第二个卷积层的卷积核大小为5x5,其余的卷积核均为3x3.第一二五个卷积层后做了最大池化操作,窗口大小为3x3,步幅为2.

    这样,卷积层的部分如下:

    net = nn.Sequential(
        nn.Conv2d(1, 96, kernel_size=11, stride=4,padding=2), #[1,96,55,55] order:batch,channel,h,w
        nn.ReLU(),
        nn.MaxPool2d(kernel_size=3,stride=2),                 #[1,96,27,27]
    
        nn.Conv2d(96, 256, kernel_size=5, stride=1,padding=2),#[1,256,27,27]
        nn.ReLU(),
        nn.MaxPool2d(kernel_size=3,stride=2),                 #[1,256,13,13]
    
        nn.Conv2d(256, 384, kernel_size=3, stride=1,padding=1), #[1,384,13,13]
        nn.ReLU(),
    
        nn.Conv2d(384, 384, kernel_size=3, stride=1,padding=1), #[1,384,13,13]
        nn.ReLU(),
    
        nn.Conv2d(384, 256, kernel_size=3, stride=1,padding=1), #[1,256,13,13]
        nn.ReLU(),
        nn.MaxPool2d(kernel_size=3,stride=2),       #[1,256,6,6]
    )
    

    接下来是全连接层的部分:

    net = nn.Sequential(
        nn.Linear(256*6*6,4096),
        nn.ReLU(),
        nn.Dropout(0.5),  #dropout防止过拟合
        nn.Linear(4096,4096),
        nn.ReLU(),
        nn.Dropout(0.5),  #dropout防止过拟合
        nn.Linear(4096,10) #我们最终要10分类
    )
    

    全连接层的参数数量过多,为了防止过拟合,我们在激活层后面加入了dropout层.

    这样的话我们就可以给出模型定义:

    class AlexNet(nn.Module):
        def __init__(self):
            super(AlexNet, self).__init__()
            self.conv = nn.Sequential(  
                nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=2), # [1,96,55,55] order:batch,channel,h,w
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=3, stride=2),  # [1,96,27,27]
    
                nn.Conv2d(96, 256, kernel_size=5, stride=1,padding=2),  # [1,256,27,27]
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=3, stride=2),  # [1,256,13,13]
    
                nn.Conv2d(256, 384, kernel_size=3, stride=1,padding=1),  # [1,384,13,13]
                nn.ReLU(),
    
                nn.Conv2d(384, 384, kernel_size=3, stride=1,padding=1),  # [1,384,13,13]
                nn.ReLU(),
    
                nn.Conv2d(384, 256, kernel_size=3, stride=1,padding=1),  # [1,256,13,13]
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=3, stride=2),  # [1,256,6,6]
            )
    
            self.fc = nn.Sequential(
                nn.Linear(256*6*6, 4096),
                nn.ReLU(),
                nn.Dropout(0.5),  # dropout防止过拟合
                nn.Linear(4096, 4096),
                nn.ReLU(),
                nn.Dropout(0.5),  # dropout防止过拟合
                nn.Linear(4096, 10)  # 我们最终要10分类
            )
        
        def forward(self, img):
            feature = self.conv(img) 
            output = self.fc(feature.view(img.shape[0], -1))#输入全连接层之前,将特征展平
            return output
    
    

    加载数据

    batch_size,num_workers=32,4
    train_iter,test_iter = learntorch_utils.load_data(batch_size,num_workers,resize=224)
    

    其中load_data定义于learntorch_utils.py.

    def load_data(batch_size,num_workers,resize):
        trans = []
        if resize:
            trans.append(torchvision.transforms.Resize(size=resize))
        trans.append(torchvision.transforms.ToTensor())
        transform = torchvision.transforms.Compose(trans)
    
        mnist_train = torchvision.datasets.FashionMNIST(root='/home/sc/disk/keepgoing/learn_pytorch/Datasets/FashionMNIST',
                                                        train=True, download=True,
                                                        transform=transform)
        mnist_test = torchvision.datasets.FashionMNIST(root='/home/sc/disk/keepgoing/learn_pytorch/Datasets/FashionMNIST',
                                                    train=False, download=True,
                                                    transform=transform)
    
        train_iter = torch.utils.data.DataLoader(
            mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
        test_iter = torch.utils.data.DataLoader(
            mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
        
        return train_iter,test_iter
    

    这里,构造了一个transform.对图像做一次resize.

        if resize:
            trans.append(torchvision.transforms.Resize(size=resize))
        trans.append(torchvision.transforms.ToTensor())
        transform = torchvision.transforms.Compose(trans)
    

    定义模型

    net = AlexNet().cuda()
    

    由于全连接层的存在,AlexNet的参数还是非常多的.所以我们使用GPU做运算

    定义损失函数

    loss = nn.CrossEntropyLoss()
    

    定义优化器

    opt = torch.optim.Adam(net.parameters(),lr=0.01)
    

    定义评估函数

    def test():
        acc_sum = 0
        batch = 0
        for X,y in test_iter:
            X,y = X.cuda(),y.cuda()
            y_hat = net(X)
            acc_sum += (y_hat.argmax(dim=1) == y).float().sum().item()
            batch += 1
        print('acc_sum %d,batch %d' % (acc_sum,batch))
    
        return 1.0*acc_sum/(batch*batch_size)
    

    验证在测试集上的准确率.

    训练

    num_epochs = 3
    def train():
        for epoch in range(num_epochs):
            train_l_sum,batch = 0,0
            start = time.time()
            for X,y in train_iter:
                X,y = X.cuda(),y.cuda()
                y_hat = net(X)
                l = loss(y_hat,y)
                opt.zero_grad()
                l.backward()
    
                opt.step()
                train_l_sum += l.item()
    
                batch += 1
            test_acc = test()
            end = time.time()
            time_per_epoch =  end - start
            print('epoch %d,train_loss %f,test_acc %f,time %f' % 
                    (epoch + 1,train_l_sum/(batch*batch_size),test_acc,time_per_epoch))
    
    train()
    

    输出

    acc_sum 6297,batch 313
    epoch 1,train_loss 54.029241,test_acc 0.628694,time 238.983008
    acc_sum 980,batch 313
    epoch 2,train_loss 0.106785,test_acc 0.097843,time 239.722055
    acc_sum 1000,batch 313
    epoch 3,train_loss 0.071997,test_acc 0.099840,time 239.459902
    

    明显出现了过拟合.我们把学习率调整为0.001后,把batch_size调整为128

    opt = torch.optim.Adam(net.parameters(),lr=0.001)
    

    再训练,输出

    acc_sum 8714,batch 79
    epoch 1,train_loss 0.004351,test_acc 0.861748,time 156.573509
    acc_sum 8813,batch 79
    epoch 2,train_loss 0.002473,test_acc 0.871539,time 201.961380
    acc_sum 8958,batch 79
    epoch 3,train_loss 0.002159,test_acc 0.885878,time 202.349568
    

    过拟合消失. 同时可以看到AlexNet由于参数过多,训练还是挺慢的.

  • 相关阅读:
    android activity 生命周期
    Android event logcat的研究
    关于new enhancement的一些知识
    LEAVE LIST-PROCESSING和LEAVE TO LIST-PROCESSING事件的作用
    报错消息写在AT SELECTION-SCREEN OUTPUT和START-OF-SELECTION事件下的区别
    字符串的 Base64 加密和解密
    接口的学习
    IDOC
    ABAP文件上传下载 用SMW0
    获取本机信息如IP 电脑名称等类
  • 原文地址:https://www.cnblogs.com/sdu20112013/p/12168139.html
Copyright © 2011-2022 走看看