zoukankan      html  css  js  c++  java
  • 异步IO简介

    最近想学习一下libevent,就先翻译一下libevent的官方文档吧.

    英文原文链接:http://www.wangafu.net/~nickm/libevent-book/01_intro.html

    大部分编程初学者都是从阻塞IO开始的。何谓阻塞IO?,即你进行一个IO调用时,除非这个操作完成,或者超时网络协议栈放弃了,否则这个调用是不返回的.比如你对TCP连接调用“connect()”时,你的操作系统将发送一个SYN包给TCP连接的对端,除非收到对端发送的SYN ACK包或者是超时了,否则connect()将不会返回。

    这里是一个简单的使用阻塞网络调用的客户端例子.客户端连接到www.google.com,发起一个HTTP请求,把响应打印到标准输出.

    /* For sockaddr_in */
    #include <netinet/in.h>
    /* For socket functions */
    #include <sys/socket.h>
    /* For gethostbyname */
    #include <netdb.h>
    
    #include <unistd.h>
    #include <string.h>
    #include <stdio.h>
    
    int main(int c, char **v)
    {
        const char query[] =
            "GET / HTTP/1.0
    "
            "Host: www.google.com
    "
            "
    ";
        const char hostname[] = "www.google.com";
        struct sockaddr_in sin;
        struct hostent *h;
        const char *cp;
        int fd;
        ssize_t n_written, remaining;
        char buf[1024];
    
        /* Look up the IP address for the hostname.   Watch out; this isn't
           threadsafe on most platforms. */
        h = gethostbyname(hostname);
        if (!h) {
            fprintf(stderr, "Couldn't lookup %s: %s", hostname, hstrerror(h_errno));
            return 1;
        }
        if (h->h_addrtype != AF_INET) {
            fprintf(stderr, "No ipv6 support, sorry.");
            return 1;
        }
    
        /* Allocate a new socket */
        fd = socket(AF_INET, SOCK_STREAM, 0);
        if (fd < 0) {
            perror("socket");
            return 1;
        }
    
        /* Connect to the remote host. */
        sin.sin_family = AF_INET;
        sin.sin_port = htons(80);
        sin.sin_addr = *(struct in_addr*)h->h_addr;
        if (connect(fd, (struct sockaddr*) &sin, sizeof(sin))) {
            perror("connect");
            close(fd);
            return 1;
        }
    
        /* Write the query. */
        /* XXX Can send succeed partially? */
        cp = query;
        remaining = strlen(query);
        while (remaining) {
          n_written = send(fd, cp, remaining, 0);
          if (n_written <= 0) {
            perror("send");
            return 1;
          }
          remaining -= n_written;
          cp += n_written;
        }
    
        /* Get an answer back. */
        while (1) {
            ssize_t result = recv(fd, buf, sizeof(buf), 0);
            if (result == 0) {
                break;
            } else if (result < 0) {
                perror("recv");
                close(fd);
                return 1;
            }
            fwrite(buf, 1, result, stdout);
        }
    
        close(fd);
        return 0;
    }

    上面代码中所有的网络调用都是阻塞的,gethostbyname()在解析www.google.com成功或失败前不会返回,connect()在链路建立链接之前不会返回,recv()在接收到数据或是链接关闭请求之前不会返回,send()在数据发送到内核的写缓冲区之前不会返回.

    阻塞IO也不是完全有害.如果你的程序在上述函数阻塞期间没啥想干的,用阻塞IO也没啥问题.但是想象一下,你现在需要写一个同时处理多个链接的程序,比如你要从2条链接里读数据,但是你并不知道哪条链接会先来数据.你可以写这样一个程序:

    Bad Example

     1 /* This won't work. */
     2 char buf[1024];
     3 int i, n;
     4 while (i_still_want_to_read()) {
     5     for (i=0; i<n_sockets; ++i) {
     6         n = recv(fd[i], buf, sizeof(buf), 0);
     7         if (n==0)
     8             handle_close(fd[i]);
     9         else if (n<0)
    10             handle_error(fd[i], errno);
    11         else
    12             handle_input(fd[i], buf, n);
    13     }
    14 }

    为什么说这个程序很不好呢?因为如果fd[2]上数据先来了,程序在fd[0]和fd[1]上数据来了并处理完成之前,根本就不会去尝试从fd[2]读数据,因为这时候还阻塞在recv(fd[0], buf, sizeof(buf),0)这里呢。

    有时候我们通过多线程或者多进程解决这个问题.最简单的一种处理方式就是每一个链接用一个进程(或线程)来处理.由于每条链接都有自己的进程,所以一条链接上的阻塞IO阻塞了并不会影响到别的链接处理进程.

    下面是另一个例子。这是一个比较繁琐的服务器程序,在端口40713上等待tcp链接,从到来的数据中每次读一行,并将这一行的ROT13加密(其实就是简单的字符变换,比如把'a'变成'n',‘b’变成'o')数据输出.程序用了UNIX下的fork()来为每一条链接创建一个进程.

    Example: Forking ROT13 serve

    /* For sockaddr_in */
    #include <netinet/in.h>
    /* For socket functions */
    #include <sys/socket.h>
    
    #include <unistd.h>
    #include <string.h>
    #include <stdio.h>
    #include <stdlib.h>
    
    #define MAX_LINE 16384
    
    char
    rot13_char(char c)
    {
        /* We don't want to use isalpha here; setting the locale would change
         * which characters are considered alphabetical. */
        if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M'))
            return c + 13;
        else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z'))
            return c - 13;
        else
            return c;
    }
    
    void
    child(int fd)
    {
        char outbuf[MAX_LINE+1];
        size_t outbuf_used = 0;
        ssize_t result;
    
        while (1) {
            char ch;
            result = recv(fd, &ch, 1, 0);
            if (result == 0) {
                break;
            } else if (result == -1) {
                perror("read");
                break;
            }
    
            /* We do this test to keep the user from overflowing the buffer. */
            if (outbuf_used < sizeof(outbuf)) {
                outbuf[outbuf_used++] = rot13_char(ch);
            }
    
            if (ch == '
    ') {
                send(fd, outbuf, outbuf_used, 0);
                outbuf_used = 0;
                continue;
            }
        }
    }
    
    void
    run(void)
    {
        int listener;
        struct sockaddr_in sin;
    
        sin.sin_family = AF_INET;
        sin.sin_addr.s_addr = 0;
        sin.sin_port = htons(40713);
    
        listener = socket(AF_INET, SOCK_STREAM, 0);
    
    #ifndef WIN32
        {
            int one = 1;
            setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
        }
    #endif
    
        if (bind(listener, (struct sockaddr*)&sin, sizeof(sin)) < 0) {
            perror("bind");
            return;
        }
    
        if (listen(listener, 16)<0) {
            perror("listen");
            return;
        }
    
    
    
        while (1) {
            struct sockaddr_storage ss;
            socklen_t slen = sizeof(ss);
            int fd = accept(listener, (struct sockaddr*)&ss, &slen);
            if (fd < 0) {
                perror("accept");
            } else {
                if (fork() == 0) {
                    child(fd);
                    exit(0);
                }
            }
        }
    }
    
    int
    main(int c, char **v)
    {
        run();
        return 0;
    }

     那么我们现在对多条链接的处理有了完美的解决方案吗?我是不是可以不写这本书而去干点别的了呢?不是这样的。首先,创建进程(线程)在某些平台上会是一笔不小的开销。在实际应用中,你可能更想使用一个线程池来代替它。但是从根本上讲,多线程并不能够达到你所期望的那种扩展性。如果你程序需要同时处理成千上万个连接,对于每个CPU仅能处理很少的线程的情况,处理成千上万个线程效率并不高。

     如果线程不是处理多条链接的答案,那什么才是呢?在Unix范例中,你可以设置socket为noblocking(非阻塞)。Unix中完成这个设置的调用如下:

    fcntl(fd, F_SETFL, O_NONBLOCK);
    

    fd是代表socket的文件描述符.一旦你设置fd(也就是socket)为非阻塞的,你在fd上进行的网络调用要么立刻完成,要么返回一个特定的错误码,告诉你“我现在没法处理,再试一遍吧”.基于此,我们的处理两条socket的程序可以这样写:
    Bad Example: busy-polling all sockets

    /* This will work, but the performance will be unforgivably bad. */
    int i, n;
    char buf[1024];
    for (i=0; i < n_sockets; ++i)
        fcntl(fd[i], F_SETFL, O_NONBLOCK);
    
    while (i_still_want_to_read()) {
        for (i=0; i < n_sockets; ++i) {
            n = recv(fd[i], buf, sizeof(buf), 0);
            if (n == 0) {
                handle_close(fd[i]);
            } else if (n < 0) {
                if (errno == EAGAIN)
                     ; /* The kernel didn't have any data for us to read. */
                else
                     handle_error(fd[i], errno);
             } else {
                handle_input(fd[i], buf, n);
             }
        }
    }
    

    现在我们使用了非阻塞socket,上述代码可以工作...但也仅限于此了。上面代码性能很差,有两点原因:一.如果两个连接上都没有数据,那么就相当于在执行一个死循环,占据了所有的cpu。二.如果你通过这种方法处理多条以上的链接,那么对每一条链接来说,都需要执行内核调用(译者注:也就是上述代码中的recv),不管链接上有没有数据.所以说我们需要的是这样一种机制来告诉内核:“一直等着,直到某条链接上有数据了就告诉我是哪条链接上来数据了”。

    下面是一个使用select的例子:
    Example: Using select

    /* If you only have a couple dozen fds, this version won't be awful */
    fd_set readset;
    int i, n;
    char buf[1024];
    
    while (i_still_want_to_read()) {
        int maxfd = -1;
        FD_ZERO(&readset);
    
        /* Add all of the interesting fds to readset */
        for (i=0; i < n_sockets; ++i) {
             if (fd[i]>maxfd) maxfd = fd[i];
             FD_SET(fd[i], &readset);
        }
    
        /* Wait until one or more fds are ready to read */
        select(maxfd+1, &readset, NULL, NULL, NULL);
    
        /* Process all of the fds that are still set in readset */
        for (i=0; i < n_sockets; ++i) {
            if (FD_ISSET(fd[i], &readset)) {
                n = recv(fd[i], buf, sizeof(buf), 0);
                if (n == 0) {
                    handle_close(fd[i]);
                } else if (n < 0) {
                    if (errno == EAGAIN)
                         ; /* The kernel didn't have any data for us to read. */
                    else
                         handle_error(fd[i], errno);
                 } else {
                    handle_input(fd[i], buf, n);
                 }
            }
        }
    }
     下面是一个使用select()重新实现ROT13 server的例子
    Example: select()-based ROT13 server
    /* For sockaddr_in */
    #include <netinet/in.h>
    /* For socket functions */
    #include <sys/socket.h>
    /* For fcntl */
    #include <fcntl.h>
    /* for select */
    #include <sys/select.h>
    
    #include <assert.h>
    #include <unistd.h>
    #include <string.h>
    #include <stdlib.h>
    #include <stdio.h>
    #include <errno.h>
    
    #define MAX_LINE 16384
    
    char
    rot13_char(char c)
    {
        /* We don't want to use isalpha here; setting the locale would change
         * which characters are considered alphabetical. */
        if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M'))
            return c + 13;
        else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z'))
            return c - 13;
        else
            return c;
    }
    
    struct fd_state {
        char buffer[MAX_LINE];
        size_t buffer_used;
    
        int writing;
        size_t n_written;
        size_t write_upto;
    };
    
    struct fd_state *
    alloc_fd_state(void)
    {
        struct fd_state *state = malloc(sizeof(struct fd_state));
        if (!state)
            return NULL;
        state->buffer_used = state->n_written = state->writing =
            state->write_upto = 0;
        return state;
    }
    
    void
    free_fd_state(struct fd_state *state)
    {
        free(state);
    }
    
    void
    make_nonblocking(int fd)
    {
        fcntl(fd, F_SETFL, O_NONBLOCK);
    }
    
    int
    do_read(int fd, struct fd_state *state)
    {
        char buf[1024];
        int i;
        ssize_t result;
        while (1) {
            result = recv(fd, buf, sizeof(buf), 0);
            if (result <= 0)
                break;
    
            for (i=0; i < result; ++i)  {
                if (state->buffer_used < sizeof(state->buffer))
                    state->buffer[state->buffer_used++] = rot13_char(buf[i]);
                if (buf[i] == '
    ') {
                    state->writing = 1;
                    state->write_upto = state->buffer_used;
                }
            }
        }
    
        if (result == 0) {
            return 1;
        } else if (result < 0) {
            if (errno == EAGAIN)
                return 0;
            return -1;
        }
    
        return 0;
    }
    
    int
    do_write(int fd, struct fd_state *state)
    {
        while (state->n_written < state->write_upto) {
            ssize_t result = send(fd, state->buffer + state->n_written,
                                  state->write_upto - state->n_written, 0);
            if (result < 0) {
                if (errno == EAGAIN)
                    return 0;
                return -1;
            }
            assert(result != 0);
    
            state->n_written += result;
        }
    
        if (state->n_written == state->buffer_used)
            state->n_written = state->write_upto = state->buffer_used = 0;
    
        state->writing = 0;
    
        return 0;
    }
    
    void
    run(void)
    {
        int listener;
        struct fd_state *state[FD_SETSIZE];
        struct sockaddr_in sin;
        int i, maxfd;
        fd_set readset, writeset, exset;
    
        sin.sin_family = AF_INET;
        sin.sin_addr.s_addr = 0;
        sin.sin_port = htons(40713);
    
        for (i = 0; i < FD_SETSIZE; ++i)
            state[i] = NULL;
    
        listener = socket(AF_INET, SOCK_STREAM, 0);
        make_nonblocking(listener);
    
    #ifndef WIN32
        {
            int one = 1;
            setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
        }
    #endif
    
        if (bind(listener, (struct sockaddr*)&sin, sizeof(sin)) < 0) {
            perror("bind");
            return;
        }
    
        if (listen(listener, 16)<0) {
            perror("listen");
            return;
        }
    
        FD_ZERO(&readset);
        FD_ZERO(&writeset);
        FD_ZERO(&exset);
    
        while (1) {
            maxfd = listener;
    
            FD_ZERO(&readset);
            FD_ZERO(&writeset);
            FD_ZERO(&exset);
    
            FD_SET(listener, &readset);
    
            for (i=0; i < FD_SETSIZE; ++i) {
                if (state[i]) {
                    if (i > maxfd)
                        maxfd = i;
                    FD_SET(i, &readset);
                    if (state[i]->writing) {
                        FD_SET(i, &writeset);
                    }
                }
            }
    
            if (select(maxfd+1, &readset, &writeset, &exset, NULL) < 0) {
                perror("select");
                return;
            }
    
            if (FD_ISSET(listener, &readset)) {
                struct sockaddr_storage ss;
                socklen_t slen = sizeof(ss);
                int fd = accept(listener, (struct sockaddr*)&ss, &slen);
                if (fd < 0) {
                    perror("accept");
                } else if (fd > FD_SETSIZE) {
                    close(fd);
                } else {
                    make_nonblocking(fd);
                    state[fd] = alloc_fd_state();
                    assert(state[fd]);/*XXX*/
                }
            }
    
            for (i=0; i < maxfd+1; ++i) {
                int r = 0;
                if (i == listener)
                    continue;
    
                if (FD_ISSET(i, &readset)) {
                    r = do_read(i, state[i]);
                }
                if (r == 0 && FD_ISSET(i, &writeset)) {
                    r = do_write(i, state[i]);
                }
                if (r) {
                    free_fd_state(state[i]);
                    state[i] = NULL;
                    close(i);
                }
            }
        }
    }
    
    int
    main(int c, char **v)
    {
        setvbuf(stdout, NULL, _IONBF, 0);
    
        run();
        return 0;
    }
    

    用select()就解决了我们之前提到的问题吗?不,还没完呢.当socket的数量很大时,select()调用的性能会很差.因为生成与读取select()的位数组的时间正比于你向select()提供的最大的fd值。

    不同的操作系统提供了不同的select()的替代函数。包括poll(),epoll(),kqueue(),evports以及/dev/poll.上述所有函数都比select()的性能要好,并且除了poll(),对增加一条socket,移除一条socket,通知一条socket已经做好IO准备而言,这些函数的时间复杂度都是O(1)。

    然而不幸地是,这些更为有效的接口并没有一个统一的标准.Linux有epoll(),BSDs(包括Darwin)有kqueue(),Solaris有evports和/dev/poll...而且这些操作系统没一个自身之外的系统的上述接口. 所以你想写一个可移植(跨平台)的高性能异步应用程序的话,你就需要一个包含上述所有接口的抽象。

    这正是Libevent API可以为你提供的最基本的功能.Libevent根据你的系统,选择最高效的select()的替代函数,并提供统一的接口.

    下面是异步ROT13 server的另一个版本.这一次我们使用Libevent 2替代select().请注意现在fd_sets没啦,取而代之的是,我们使用结构event_base与events进行关联以及解除关联.event_base根据select(),poll(),epoll(),kqueue()等实现.

    Example: A low-level ROT13 server with Libevent

    /* For sockaddr_in */
    #include <netinet/in.h>
    /* For socket functions */
    #include <sys/socket.h>
    /* For fcntl */
    #include <fcntl.h>
    
    #include <event2/event.h>
    
    #include <assert.h>
    #include <unistd.h>
    #include <string.h>
    #include <stdlib.h>
    #include <stdio.h>
    #include <errno.h>
    
    #define MAX_LINE 16384
    
    void do_read(evutil_socket_t fd, short events, void *arg);
    void do_write(evutil_socket_t fd, short events, void *arg);
    
    char
    rot13_char(char c)
    {
        /* We don't want to use isalpha here; setting the locale would change
         * which characters are considered alphabetical. */
        if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M'))
            return c + 13;
        else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z'))
            return c - 13;
        else
            return c;
    }
    
    struct fd_state {
        char buffer[MAX_LINE];
        size_t buffer_used;
    
        size_t n_written;
        size_t write_upto;
    
        struct event *read_event;
        struct event *write_event;
    };
    
    struct fd_state *
    alloc_fd_state(struct event_base *base, evutil_socket_t fd)
    {
        struct fd_state *state = malloc(sizeof(struct fd_state));
        if (!state)
            return NULL;
        state->read_event = event_new(base, fd, EV_READ|EV_PERSIST, do_read, state);
        if (!state->read_event) {
            free(state);
            return NULL;
        }
        state->write_event =
            event_new(base, fd, EV_WRITE|EV_PERSIST, do_write, state);
    
        if (!state->write_event) {
            event_free(state->read_event);
            free(state);
            return NULL;
        }
    
        state->buffer_used = state->n_written = state->write_upto = 0;
    
        assert(state->write_event);
        return state;
    }
    
    void
    free_fd_state(struct fd_state *state)
    {
        event_free(state->read_event);
        event_free(state->write_event);
        free(state);
    }
    
    void
    do_read(evutil_socket_t fd, short events, void *arg)
    {
        struct fd_state *state = arg;
        char buf[1024];
        int i;
        ssize_t result;
        while (1) {
            assert(state->write_event);
            result = recv(fd, buf, sizeof(buf), 0);
            if (result <= 0)
                break;
    
            for (i=0; i < result; ++i)  {
                if (state->buffer_used < sizeof(state->buffer))
                    state->buffer[state->buffer_used++] = rot13_char(buf[i]);
                if (buf[i] == '
    ') {
                    assert(state->write_event);
                    event_add(state->write_event, NULL);
                    state->write_upto = state->buffer_used;
                }
            }
        }
    
        if (result == 0) {
            free_fd_state(state);
        } else if (result < 0) {
            if (errno == EAGAIN) // XXXX use evutil macro
                return;
            perror("recv");
            free_fd_state(state);
        }
    }
    
    void
    do_write(evutil_socket_t fd, short events, void *arg)
    {
        struct fd_state *state = arg;
    
        while (state->n_written < state->write_upto) {
            ssize_t result = send(fd, state->buffer + state->n_written,
                                  state->write_upto - state->n_written, 0);
            if (result < 0) {
                if (errno == EAGAIN) // XXX use evutil macro
                    return;
                free_fd_state(state);
                return;
            }
            assert(result != 0);
    
            state->n_written += result;
        }
    
        if (state->n_written == state->buffer_used)
            state->n_written = state->write_upto = state->buffer_used = 1;
    
        event_del(state->write_event);
    }
    
    void
    do_accept(evutil_socket_t listener, short event, void *arg)
    {
        struct event_base *base = arg;
        struct sockaddr_storage ss;
        socklen_t slen = sizeof(ss);
        int fd = accept(listener, (struct sockaddr*)&ss, &slen);
        if (fd < 0) { // XXXX eagain??
            perror("accept");
        } else if (fd > FD_SETSIZE) {
            close(fd); // XXX replace all closes with EVUTIL_CLOSESOCKET */
        } else {
            struct fd_state *state;
            evutil_make_socket_nonblocking(fd);
            state = alloc_fd_state(base, fd);
            assert(state); /*XXX err*/
            assert(state->write_event);
            event_add(state->read_event, NULL);
        }
    }
    
    void
    run(void)
    {
        evutil_socket_t listener;
        struct sockaddr_in sin;
        struct event_base *base;
        struct event *listener_event;
    
        base = event_base_new();
        if (!base)
            return; /*XXXerr*/
    
        sin.sin_family = AF_INET;
        sin.sin_addr.s_addr = 0;
        sin.sin_port = htons(40713);
    
        listener = socket(AF_INET, SOCK_STREAM, 0);
        evutil_make_socket_nonblocking(listener);
    
    #ifndef WIN32
        {
            int one = 1;
            setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
        }
    #endif
    
        if (bind(listener, (struct sockaddr*)&sin, sizeof(sin)) < 0) {
            perror("bind");
            return;
        }
    
        if (listen(listener, 16)<0) {
            perror("listen");
            return;
        }
    
        listener_event = event_new(base, listener, EV_READ|EV_PERSIST, do_accept, (void*)base);
        /*XXX check it */
        event_add(listener_event, NULL);
    
        event_base_dispatch(base);
    }
    
    int
    main(int c, char **v)
    {
        setvbuf(stdout, NULL, _IONBF, 0);
    
        run();
        return 0;
    }
    

    (代码中需要注意的:我们没把socket定义为"int"型,我们用了evutil_socket_t.我们没有使用fcntl(O_NONBLOCK)去设置socket为非阻塞的,我们使用了evutil_make_socket_nonblocking.上述这些改变使得我们的代码兼容Win32的网络API)

    What about convenience? (and what about Windows?)

    你可能注意到了,在我们的代码变得更高效的同时,也变得更复杂了.回顾一下我们使用fork的版本,我们不必为每一条链接都管理一个缓冲区:我们为每一个进程都有一个独立的栈上分配的缓冲区.

    我们不必精确地知道哪一个socket在读或者写:这是隐含在代码中的.(that was implicit in our location in the code).我们也不需要一个结构来跟踪每一个操作都完成了多少:我们使用循环和栈变量就好了.

    此外,如果你对windows网络编程非常有经验的话,你会意识到,我们在上述例子中对libevent的用法并不会有最好的性能.在windows上,最快的异步IO方式使用的不是select()-like的接口:它用的是IOCP(IO Completion Ports:IO完成端口) API.不像别的高效的网络API,IOCP并不在一个socket已经对你的程序需要做的某些操作做好准备的时候就通知你的程序.取而代之的是,你的程序告诉windows网络栈开始网络操作,当操作完成的时候IOCP再通知程序.

    幸运的是,Libevent2的"bufferevents"接口解决了上述这些问题:这使得我们的程序更易于编写,并且可以高效地在Windows和Unix下运行.

    下面是我们使用bufferevents API的最新的ROT13 server。

    Example: A simpler ROT13 server with Libevent

    /* For sockaddr_in */
    #include <netinet/in.h>
    /* For socket functions */
    #include <sys/socket.h>
    /* For fcntl */
    #include <fcntl.h>
    
    #include <event2/event.h>
    #include <event2/buffer.h>
    #include <event2/bufferevent.h>
    
    #include <assert.h>
    #include <unistd.h>
    #include <string.h>
    #include <stdlib.h>
    #include <stdio.h>
    #include <errno.h>
    
    #define MAX_LINE 16384
    
    void do_read(evutil_socket_t fd, short events, void *arg);
    void do_write(evutil_socket_t fd, short events, void *arg);
    
    char
    rot13_char(char c)
    {
        /* We don't want to use isalpha here; setting the locale would change
         * which characters are considered alphabetical. */
        if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M'))
            return c + 13;
        else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z'))
            return c - 13;
        else
            return c;
    }
    
    void
    readcb(struct bufferevent *bev, void *ctx)
    {
        struct evbuffer *input, *output;
        char *line;
        size_t n;
        int i;
        input = bufferevent_get_input(bev);
        output = bufferevent_get_output(bev);
    
        while ((line = evbuffer_readln(input, &n, EVBUFFER_EOL_LF))) {
            for (i = 0; i < n; ++i)
                line[i] = rot13_char(line[i]);
            evbuffer_add(output, line, n);
            evbuffer_add(output, "
    ", 1);
            free(line);
        }
    
        if (evbuffer_get_length(input) >= MAX_LINE) {
            /* Too long; just process what there is and go on so that the buffer
             * doesn't grow infinitely long. */
            char buf[1024];
            while (evbuffer_get_length(input)) {
                int n = evbuffer_remove(input, buf, sizeof(buf));
                for (i = 0; i < n; ++i)
                    buf[i] = rot13_char(buf[i]);
                evbuffer_add(output, buf, n);
            }
            evbuffer_add(output, "
    ", 1);
        }
    }
    
    void
    errorcb(struct bufferevent *bev, short error, void *ctx)
    {
        if (error & BEV_EVENT_EOF) {
            /* connection has been closed, do any clean up here */
            /* ... */
        } else if (error & BEV_EVENT_ERROR) {
            /* check errno to see what error occurred */
            /* ... */
        } else if (error & BEV_EVENT_TIMEOUT) {
            /* must be a timeout event handle, handle it */
            /* ... */
        }
        bufferevent_free(bev);
    }
    
    void
    do_accept(evutil_socket_t listener, short event, void *arg)
    {
        struct event_base *base = arg;
        struct sockaddr_storage ss;
        socklen_t slen = sizeof(ss);
        int fd = accept(listener, (struct sockaddr*)&ss, &slen);
        if (fd < 0) {
            perror("accept");
        } else if (fd > FD_SETSIZE) {
            close(fd);
        } else {
            struct bufferevent *bev;
            evutil_make_socket_nonblocking(fd);
            bev = bufferevent_socket_new(base, fd, BEV_OPT_CLOSE_ON_FREE);
            bufferevent_setcb(bev, readcb, NULL, errorcb, NULL);
            bufferevent_setwatermark(bev, EV_READ, 0, MAX_LINE);
            bufferevent_enable(bev, EV_READ|EV_WRITE);
        }
    }
    
    void
    run(void)
    {
        evutil_socket_t listener;
        struct sockaddr_in sin;
        struct event_base *base;
        struct event *listener_event;
    
        base = event_base_new();
        if (!base)
            return; /*XXXerr*/
    
        sin.sin_family = AF_INET;
        sin.sin_addr.s_addr = 0;
        sin.sin_port = htons(40713);
    
        listener = socket(AF_INET, SOCK_STREAM, 0);
        evutil_make_socket_nonblocking(listener);
    
    #ifndef WIN32
        {
            int one = 1;
            setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
        }
    #endif
    
        if (bind(listener, (struct sockaddr*)&sin, sizeof(sin)) < 0) {
            perror("bind");
            return;
        }
    
        if (listen(listener, 16)<0) {
            perror("listen");
            return;
        }
    
        listener_event = event_new(base, listener, EV_READ|EV_PERSIST, do_accept, (void*)base);
        /*XXX check it */
        event_add(listener_event, NULL);
    
        event_base_dispatch(base);
    }
    
    int
    main(int c, char **v)
    {
        setvbuf(stdout, NULL, _IONBF, 0);
    
        run();
        return 0;
    }
    
  • 相关阅读:
    Tomcat安装与配置
    模板方法模式
    观察者模式
    访问者模式
    策略模式
    迭代器模式
    状态模式
    访问者模式
    备忘录模式
    解释器模式
  • 原文地址:https://www.cnblogs.com/sdu20112013/p/3925596.html
Copyright © 2011-2022 走看看