题意
(n imes n) 的棋盘上有 (k) 个棋子,棋子有两种, 'X' 和 'O' ,你需要进行不多于 (lfloor dfrac k3 floor) 次操作,每次操作把 'X' 变成 'O' 或者把 'O' 变成 'X' 使得没有三个相同的连续棋子在同一列或则同一行。
思路
把棋盘进行染色,坐标 (i,j) ,根据 (i + j) % 3 染成三种不同的颜色,只需要将其中两种颜色变成 'X' 和 'O' 就可以。一共有 6 种方案,它们的操作次数总和是 2k ,根据抽屉原理,必然存在一种合法的解。
这个构造其实不是特别难想,但是当时只想出了简单版版本的,三种颜色染一种,差一点转弯没有转过去。