zoukankan      html  css  js  c++  java
  • Frogger

     
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 28802   Accepted: 9353

    Description

    Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 
    Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
    To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 
    The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones. 

    You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone. 

    Input

    The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.

    Output

    For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.

    Sample Input

    2
    0 0
    3 4
    
    3
    17 4
    19 4
    18 5
    
    0
    

    Sample Output

    Scenario #1
    Frog Distance = 5.000
    
    Scenario #2
    Frog Distance = 1.414
    这题可以用Dijkstra,将松弛条件改一下就可以了,改成
              if(dis[j]>max(dis[stone],map[stone][j])&&(vis[j]==0)){
                  dis[j]=max(dis[stone],map[stone][j]);
              }
    这样的结果就是求得能到达这点的路径上的最长边的最小值,求输出时要注意格式
     1 #include <iostream>
     2 #include<math.h>
     3 #include<limits.h>
     4 #include<algorithm>
     5 #include<iomanip>
     6 using namespace std;
     7 int num;
     8 int vis[200],stone[200][2];
     9 int map[200][200],dis[200];
    10 int Dijkstra(){
    11     for(int i=0;i<num;i++){
    12         dis[i]=INT_MAX;
    13         vis[i]=0;
    14     }
    15     dis[0]=0;
    16     for(int i=0;i<num;i++){
    17         int min=INT_MAX;
    18         int stone;
    19         for(int j=0;j<num;j++){
    20             if((vis[j]==0)&&min>dis[j]){
    21                 stone=j;
    22                 min=dis[j];
    23             }
    24         }
    25         vis[stone]=1;
    26         if(min==INT_MAX)
    27             break;
    28         for(int j=0;j<num;j++){
    29             if(dis[j]>max(dis[stone],map[stone][j])&&(vis[j]==0)){
    30                 dis[j]=max(dis[stone],map[stone][j]);
    31             }
    32         }
    33     }
    34     return dis[1];
    35 }
    36 
    37 int main() {
    38 
    39     cin>>num;
    40     int count=1;
    41     while(num){
    42         for(int i=0;i<num;i++){
    43             cin>>stone[i][0]>>stone[i][1];
    44         }
    45         for(int i=0;i<num;i++){
    46             for(int j=0;j<num;j++){
    47                 map[i][j]=pow((stone[i][0]-stone[j][0]),2)+pow((stone[i][1]-stone[j][1]),2);
    48             }
    49         }
    50         float  fdis=sqrt(Dijkstra());
    51         cout<<fixed;
    52         cout<<"Scenario #"<<count<<endl<<"Frog Distance = "<<setprecision(3)<<fdis<<endl<<endl;
    53 
    54         count++;
    55         cin>>num;
    56     }
    57 
    58     return 0;
    59 }
  • 相关阅读:
    普通用户权限问题解决:hadoop is not in the sudoers file. This incident will be reported.
    新安装的Ubuntu系统中默认的root用户密码是多少,怎么修改?
    Ubuntu环境变量恢复
    无法获得数据库 'model' 上的排他锁 解决办法
    linux常用命令大全
    Windows 10/Win10命令大全通用(Win8,Win7)
    SQLServer 创建SQL Server 身份验证用户
    SQL注入学习笔记
    vbs整人脚本,别运行!!!
    Linux命令行编辑常用的快捷键
  • 原文地址:https://www.cnblogs.com/sdxk/p/4632295.html
Copyright © 2011-2022 走看看