demo1
import heapq nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2] print(heapq.nlargest(3, nums)) # Prints [42, 37, 23] print(heapq.nsmallest(3, nums)) # Prints [-4, 1, 2]
输出:
[42, 37, 23] [-4, 1, 2]
demo2
import heapq portfolio = [ {'name': 'IBM', 'shares': 100, 'price': 91.1}, {'name': 'AAPL', 'shares': 50, 'price': 543.22}, {'name': 'FB', 'shares': 200, 'price': 21.09}, {'name': 'HPQ', 'shares': 35, 'price': 31.75}, {'name': 'YHOO', 'shares': 45, 'price': 16.35}, {'name': 'ACME', 'shares': 75, 'price': 115.65} ] cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price']) expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price']) print(cheap," ") print(expensive)
输出:
[{'name': 'YHOO', 'shares': 45, 'price': 16.35}, {'name': 'FB', 'shares': 200, 'price': 21.09}, {'name': 'HPQ', 'shares': 35, 'price': 31.75}] [{'name': 'AAPL', 'shares': 50, 'price': 543.22}, {'name': 'ACME', 'shares': 75, 'price': 115.65}, {'name': 'IBM', 'shares': 100, 'price': 91.1}]
demo3
>>> nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2] >>> import heapq >>> heap = list(nums) >>> heapq.heapify(heap) >>> heap [-4, 2, 1, 23, 7, 2, 18, 23, 42, 37, 8] >>>
堆数据结构最重要的特征是 heap[0]
永远是最小的元素。并且剩余的元素可以很容易的通过调用 heapq.heappop()
方法得到, 该方法会先将第一个元素弹出来,然后用下一个最小的元素来取代被弹出元素(这种操作时间复杂度仅仅是 O(log N),N 是堆大小)。 比如,如果想要查找最小的 3 个元素,你可以这样做:
>>> heapq.heappop(heap) -4 >>> heapq.heappop(heap) 1 >>> heapq.heappop(heap) 2
demo4
>>> nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2] >>> import heapq >>> heap = list(nums) >>> heapq.heapify(heap) >>> heap [-4, 2, 1, 23, 7, 2, 18, 23, 42, 37, 8] >>> heap[0] -4 >>> heap[1] 2 >>> heapq.heappop(heap) -4 >>> heap[0] 1
注意:一旦pop ,原heap就会发生改变。