zoukankan      html  css  js  c++  java
  • linux socket中tcp的time_wait的快速回收和重用

    最近项目中发现用screen启动socket老出错,在调试脚本中看出是screen 启动后,但是并没有将socket拉起;起初一直在查是不是由于screen启动机制导致的,后来和同事沟通发现是由于服务器端socket有大量的客户端连接时,当服务器主动kill掉socket的tcp端口时,再次立即重启,socket端口并不会成功启动,原因是服务器端口的连接处于time_wait状态。

    解决方法:

    我们可以通过调整内核参数来调整:

    vi /etc/sysctl.conf

    编辑文件,加入以下内容:
    net.ipv4.tcp_syncookies = 1
    net.ipv4.tcp_tw_reuse = 1
    net.ipv4.tcp_tw_recycle = 1
    net.ipv4.tcp_fin_timeout = 30 

    然后执行/sbin/sysctl -p让参数生效。

    net.ipv4.tcp_syncookies = 1表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭;

    net.ipv4.tcp_tw_reuse = 1表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭;

    net.ipv4.tcp_tw_recycle = 1表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭。

    net.ipv4.tcp_fin_timeout修改系統默认的TIMEOUT时间

    修改之后,再用命令查看TIME_WAIT连接数netstat -ant |grep “TIME_WAIT” |wc –l

    在没有nat情况下还需要设置net.ipv4.tcp_timestamps = 1才能生效。

    关于内核参数的详细介绍,可以参考官方文档。我们这里简要说明一下tcp_tw_recycle参数。它用来快速回收TIME_WAIT连接,不过如果在NAT环境下会引发问题。
    RFC1323中有如下一段描述:
    An additional mechanism could be added to the TCP, a per-host cache of the last timestamp received from any connection. This value could then be used in the PAWS mechanism to reject old duplicate segments from earlier incarnations of the connection, if the timestamp clock can be guaranteed to have ticked at least once since the old connection was open. This would require that the TIME-WAIT delay plus the RTT together must be at least one tick of the sender’s timestamp clock. Such an extension is not part of the proposal of this RFC.
    大概意思是说TCP有一种行为,可以缓存每个连接最新的时间戳,后续请求中如果时间戳小于缓存的时间戳,即视为无效,相应的数据包会被丢弃。
    Linux是否启用这种行为取决于tcp_timestamps和tcp_tw_recycle,因为tcp_timestamps缺省就是开启的,所以当tcp_tw_recycle被开启后,实际上这种行为就被激活了。在nat环境中会出现时间戳错乱的情况,后面的数据包就被丢弃了,具体的 表现通常是是客户端明明发送的SYN,但服务端就是不响应ACK。

    ============================================================================================

    tcp参数详解之tcp_fin_timeout

    ============================================================================================

    tcp_fin_timeout :INTEGER
    默认值是 60
    对于本端断开的socket连接,TCP保持在FIN_WAIT_2状态的时间。对方可能会断开连接或一直不结束连接或不可预料的进程死亡。默认值为 60 秒。过去在2.2版本的内核中是 180 秒。您可以设置该值﹐但需要注意﹐如果您的机器为负载很重的web服务器﹐您可能要冒内存被大量无效数据报填满的风险﹐FIN-WAIT-2 sockets 的危险性低于 FIN-WAIT-1 ﹐因为它们最多只吃 1.5K 的内存﹐但是它们存在时间更长。另外参考 tcp_max_orphans。

    CLOSE_WAIT状态的生成原因
    如果服务器程序APACHE处于CLOSE_WAIT状态的话,说明套接字是被动关闭的!

    假设CLIENT端主动断掉当前连接,那么双方关闭这个TCP连接共需要四个packet:

          Client --->  FIN  --->  Server 

          Client <---  ACK  <---  Server 

     这时候Client端处于FIN_WAIT_2状态;而Server 程序处于CLOSE_WAIT状态。

          Client <---  FIN  <---  Server 

    这时Server 发送FIN给Client,Server 就置为LAST_ACK状态。

           Client --->  ACK  --->  Server 

    Client回应了ACK,那么Server 的套接字才会真正置为CLOSED状态。

    Server 程序处于CLOSE_WAIT状态,而不是LAST_ACK状态,说明还没有发FIN给Client,那么可能是在关闭连接之前还有许多数据要发送或者其他事要做,导致没有发这个FIN packet。

    通常来说,一个CLOSE_WAIT会维持至少2个小时的时间。如果有个流氓特地写了个程序,给你造成一堆的CLOSE_WAIT,消耗资源,那么通常是等不到释放那一刻,系统就已经解决崩溃了。


    ============================================================================================

    TCP连接状态详解及TIME_WAIT过多的解决方法

    ============================================================================================

    TIME_WAIT状态原理

    ----------------------------

    通信双方建立TCP连接后,主动关闭连接的一方就会进入TIME_WAIT状态。

    客户端主动关闭连接时,会发送最后一个ack后,然后会进入TIME_WAIT状态,再停留2个MSL时间(后有MSL的解释),进入CLOSED状态。

    下图是以客户端主动关闭连接为例,说明这一过程的。

    TIME_WAIT状态存在的理由

    ----------------------------

    TCP/IP协议就是这样设计的,是不可避免的。主要有两个原因:

    1)可靠地实现TCP全双工连接的终止

    TCP协议在关闭连接的四次握手过程中,最终的ACK是由主动关闭连接的一端(后面统称A端)发出的,如果这个ACK丢失,对方(后面统称B端)将重发出最终的FIN,因此A端必须维护状态信息(TIME_WAIT)允许它重发最终的ACK。如果A端不维持TIME_WAIT状态,而是处于CLOSED 状态,那么A端将响应RST分节,B端收到后将此分节解释成一个错误(在java中会抛出connection reset的SocketException)。

    因而,要实现TCP全双工连接的正常终止,必须处理终止过程中四个分节任何一个分节的丢失情况,主动关闭连接的A端必须维持TIME_WAIT状态 。

    2)允许老的重复分节在网络中消逝 

    TCP分节可能由于路由器异常而“迷途”,在迷途期间,TCP发送端可能因确认超时而重发这个分节,迷途的分节在路由器修复后也会被送到最终目的地,这个迟到的迷途分节到达时可能会引起问题。在关闭“前一个连接”之后,马上又重新建立起一个相同的IP和端口之间的“新连接”,“前一个连接”的迷途重复分组在“前一个连接”终止后到达,而被“新连接”收到了。为了避免这个情况,TCP协议不允许处于TIME_WAIT状态的连接启动一个新的可用连接,因为TIME_WAIT状态持续2MSL,就可以保证当成功建立一个新TCP连接的时候,来自旧连接重复分组已经在网络中消逝。

    MSL时间

    ----------------------------

    MSL就是maximum segment lifetime(最大分节生命期),这是一个IP数据包能在互联网上生存的最长时间,超过这个时间IP数据包将在网络中消失 。MSL在RFC 1122上建议是2分钟,而源自berkeley的TCP实现传统上使用30秒。

    TIME_WAIT状态维持时间

    ----------------------------

    TIME_WAIT状态维持时间是两个MSL时间长度,也就是在1-4分钟。Windows操作系统就是4分钟。

    http://www.cnblogs.com/itcomputer/p/7150954.html

    上图对排除和定位网络或系统故障时大有帮助,但是怎样牢牢地将这张图刻在脑中呢?那么你就一定要对这张图的每一个状态,及转换的过程有深刻地认识,不能只停留在一知半解之中。下面对这张图的11种状态详细解释一下,以便加强记忆!不过在这之前,先回顾一下TCP建立连接的三次握手过程,以及关闭连接的四次握手过程。

    1、建立连接协议(三次握手)
    (1)客户端发送一个带SYN标志的TCP报文到服务器。这是三次握手过程中的报文1。

    (2) 服务器端回应客户端的,这是三次握手中的第2个报文,这个报文同时带ACK标志和SYN标志。因此它表示对刚才客户端SYN报文的回应;同时又标志SYN给客户端,询问客户端是否准备好进行数据通讯。

    (3) 客户必须再次回应服务段一个ACK报文,这是报文段3。

    2、连接终止协议(四次握手)
    由于TCP连接是全双工的,因此每个方向都必须单独进行关闭。这原则是当一方完成它的数据发送任务后就能发送一个FIN来终止这个方向的连接。收到一个 FIN只意味着这一方向上没有数据流动,一个TCP连接在收到一个FIN后仍能发送数据。首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。

    (1) TCP客户端发送一个FIN,用来关闭客户到服务器的数据传送(报文段4)。
    (2) 服务器收到这个FIN,它发回一个ACK,确认序号为收到的序号加1(报文段5)。和SYN一样,一个FIN将占用一个序号。
    (3) 服务器关闭客户端的连接,发送一个FIN给客户端(报文段6)。
    (4) 客户段发回ACK报文确认,并将确认序号设置为收到序号加1(报文段7)。

    CLOSED: 这个没什么好说的了,表示初始状态。

    LISTEN: 这个也是非常容易理解的一个状态,表示服务器端的某个SOCKET处于监听状态,可以接受连接了。

    SYN_RCVD: 这个状态表示接受到了SYN报文,在正常情况下,这个状态是服务器端的SOCKET在建立TCP连接时的三次握手会话过程中的一个中间状态,很短暂,基本上用netstat你是很难看到这种状态的,除非你特意写了一个客户端测试程序,故意将三次TCP握手过程中最后一个ACK报文不予发送。因此这种状态时,当收到客户端的ACK报文后,它会进入到ESTABLISHED状态。

    SYN_SENT: 这个状态与SYN_RCVD遥想呼应,当客户端SOCKET执行CONNECT连接时,它首先发送SYN报文,因此也随即它会进入到了SYN_SENT状态,并等待服务端的发送三次握手中的第2个报文。SYN_SENT状态表示客户端已发送SYN报文。

    ESTABLISHED:这个容易理解了,表示连接已经建立了。

    FIN_WAIT_1: 这个状态要好好解释一下,其实FIN_WAIT_1和FIN_WAIT_2状态的真正含义都是表示等待对方的FIN报文。而这两种状态的区别是:FIN_WAIT_1状态实际上是当SOCKET在ESTABLISHED状态时,它想主动关闭连接,向对方发送了FIN报文,此时该SOCKET即进入到FIN_WAIT_1状态。而当对方回应ACK报文后,则进入到FIN_WAIT_2状态,当然在实际的正常情况下,无论对方何种情况下,都应该马上回应ACK报文,所以FIN_WAIT_1状态一般是比较难见到的,而FIN_WAIT_2状态还有时常常可以用netstat看到。

    FIN_WAIT_2:上面已经详细解释了这种状态,实际上FIN_WAIT_2状态下的SOCKET,表示半连接,也即有一方要求close连接,但另外还告诉对方,我暂时还有点数据需要传送给你,稍后再关闭连接。

    TIME_WAIT: 表示收到了对方的FIN报文,并发送出了ACK报文,就等2MSL后即可回到CLOSED可用状态了。如果FIN_WAIT_1状态下,收到了对方同时带FIN标志和ACK标志的报文时,可以直接进入到TIME_WAIT状态,而无须经过FIN_WAIT_2状态。

    注:MSL(最大分段生存期)指明TCP报文在Internet上最长生存时间,每个具体的TCP实现都必须选择一个确定的MSL值.RFC 1122建议是2分钟,但BSD传统实现采用了30秒.TIME_WAIT 状态最大保持时间是2 * MSL,也就是1-4分钟.

    CLOSING: 这种状态比较特殊,实际情况中应该是很少见,属于一种比较罕见的例外状态。正常情况下,当你发送FIN报文后,按理来说是应该先收到(或同时收到)对方的ACK报文,再收到对方的FIN报文。但是CLOSING状态表示你发送FIN报文后,并没有收到对方的ACK报文,反而却也收到了对方的FIN报文。什么情况下会出现此种情况呢?其实细想一下,也不难得出结论:那就是如果双方几乎在同时close一个SOCKET的话,那么就出现了双方同时发送FIN报文的情况,也即会出现CLOSING状态,表示双方都正在关闭SOCKET连接。

    CLOSE_WAIT: 这种状态的含义其实是表示在等待关闭。怎么理解呢?当对方close一个SOCKET后发送FIN报文给自己,你系统毫无疑问地会回应一个ACK报文给对方,此时则进入到CLOSE_WAIT状态。接下来呢,实际上你真正需要考虑的事情是察看你是否还有数据发送给对方,如果没有的话,那么你也就可以close这个SOCKET,发送FIN报文给对方,也即关闭连接。所以你在CLOSE_WAIT状态下,需要完成的事情是等待你去关闭连接。

    LAST_ACK: 这个状态还是比较容易好理解的,它是被动关闭一方在发送FIN报文后,最后等待对方的ACK报文。当收到ACK报文后,也即可以进入到CLOSED可用状态了。

    最后有2个问题的回答,我自己分析后的结论(不一定保证100%正确)

    1、 为什么建立连接协议是三次握手,而关闭连接却是四次握手呢?

    这是因为服务端的LISTEN状态下的SOCKET当收到SYN报文的建连请求后,它可以把ACK和SYN(ACK起应答作用,而SYN起同步作用)放在一个报文里来发送。但关闭连接时,当收到对方的FIN报文通知时,它仅仅表示对方没有数据发送给你了;但未必你所有的数据都全部发送给对方了,所以你可以未必会马上会关闭SOCKET,也即你可能还需要发送一些数据给对方之后,再发送FIN报文给对方来表示你同意现在可以关闭连接了,所以它这里的ACK报文和FIN报文多数情况下都是分开发送的。

    2、 为什么TIME_WAIT状态还需要等2MSL后才能返回到CLOSED状态?

    这是因为:虽然双方都同意关闭连接了,而且握手的4个报文也都协调和发送完毕,按理可以直接回到CLOSED状态(就好比从SYN_SEND状态到ESTABLISH状态那样);但是因为我们必须要假想网络是不可靠的,你无法保证你最后发送的ACK报文会一定被对方收到,因此对方处于LAST_ACK状态下的SOCKET可能会因为超时未收到ACK报文,而重发FIN报文,所以这个TIME_WAIT状态的作用就是用来重发可能丢失的ACK报文,并保证于此。

    查看当前系统下所有连接状态的数:

    [root@vps ~]#netstat -n|awk '/^tcp/{++S[$NF]}END{for (key in S) print key,S[key]}'
    TIME_WAIT 286
    FIN_WAIT1 5
    FIN_WAIT2 6
    ESTABLISHED 269
    SYN_RECV 5
    CLOSING 1
    

    如发现系统存在大量TIME_WAIT状态的连接,通过调整内核参数解决:
    编辑文件/etc/sysctl.conf,加入以下内容:

    net.ipv4.tcp_syncookies = 1
    net.ipv4.tcp_tw_reuse = 1
    net.ipv4.tcp_tw_recycle = 1
    net.ipv4.tcp_fin_timeout = 30
    

    然后执行 /sbin/sysctl -p 让参数生效。

    net.ipv4.tcp_syncookies = 1 表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭;
    net.ipv4.tcp_tw_reuse = 1 表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭;
    net.ipv4.tcp_tw_recycle = 1 表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭。
    net.ipv4.tcp_fin_timeout 修改系默认的 TIMEOUT 时间

    其它参数说明:
    net.ipv4.tcp_syncookies = 1 表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭;
    net.ipv4.tcp_tw_reuse = 1 表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭;
    net.ipv4.tcp_tw_recycle = 1 表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭。
    net.ipv4.tcp_fin_timeout = 30 表示如果套接字由本端要求关闭,这个参数决定了它保持在FIN-WAIT-2状态的时间。
    net.ipv4.tcp_keepalive_time = 1200 表示当keepalive起用的时候,TCP发送keepalive消息的频度。缺省是2小时,改为20分钟。
    net.ipv4.ip_local_port_range = 1024 65000 表示用于向外连接的端口范围。缺省情况下很小:32768到61000,改为1024到65000。
    net.ipv4.tcp_max_syn_backlog = 8192 表示SYN队列的长度,默认为1024,加大队列长度为8192,可以容纳更多等待连接的网络连接数。
    net.ipv4.tcp_max_tw_buckets = 5000 表示系统同时保持TIME_WAIT套接字的最大数量,如果超过这个数字,TIME_WAIT套接字将立刻被清除并打印警告信息。
    默 认为180000,改为5000。对于Apache、Nginx等服务器,上几行的参数可以很好地减少TIME_WAIT套接字数量,但是对于Squid,效果却不大。此项参数可以控制TIME_WAIT套接字的最大数量,避免Squid服务器被大量的TIME_WAIT套接字拖死。

    注:
    net.ipv4.tcp_tw_reuse = 1
    net.ipv4.tcp_tw_recycle = 1

    设置这两个参数: reuse是表示是否允许重新应用处于TIME-WAIT状态的socket用于新的TCP连接; recyse是加速TIME-WAIT sockets回收

     http://blog.sina.com.cn/s/blog_8e5d24890102w9yi.html

     

    用于统计当前各种状态的连接的数量的命令

    ---------------------------

    #netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}'

    返回结果如下:

    LAST_ACK 14

    SYN_RECV 348

    ESTABLISHED 70

    FIN_WAIT1 229

    FIN_WAIT2 30

    CLOSING 33

    TIME_WAIT 18122

    对上述结果的解释:

    CLOSED:无连接是活动的或正在进行

    LISTEN:服务器在等待进入呼叫

    SYN_RECV:一个连接请求已经到达,等待确认

    SYN_SENT:应用已经开始,打开一个连接

    ESTABLISHED:正常数据传输状态

    FIN_WAIT1:应用说它已经完成

    FIN_WAIT2:另一边已同意释放

    ITMED_WAIT:等待所有分组死掉

    CLOSING:两边同时尝试关闭

    TIME_WAIT:另一边已初始化一个释放

    LAST_ACK:等待所有分组死掉

    进一步论述这个问题:

    ===============================

    --------------客户端主动关闭连接-----------------------

    注意一个问题,进入TIME_WAIT状态的一般情况下是客户端。

    大多数服务器端一般执行被动关闭,服务器不会进入TIME_WAIT状态。

    当在服务器端关闭某个服务再重新启动时,服务器是会进入TIME_WAIT状态的。

    举例:

    1.客户端连接服务器的80服务,这时客户端会启用一个本地的端口访问服务器的80,访问完成后关闭此连接,立刻再次访问服务器的80,这时客户端会启用另一个本地的端口,而不是刚才使用的那个本地端口。原因就是刚才的那个连接还处于TIME_WAIT状态。

    2.客户端连接服务器的80服务,这时服务器关闭80端口,立即再次重启80端口的服务,这时可能不会成功启动,原因也是服务器的连接还处于TIME_WAIT状态。

    服务端提供服务时,一般监听一个端口就够了。例如Apach监听80端口。

    客户端则是使用一个本地的空闲端口(大于1024),与服务端的Apache的80端口建立连接。

    当通信时使用短连接,并由客户端主动关闭连接时,主动关闭连接的客户端会产生TIME_WAIT状态的连接,一个TIME_WAIT状态的连接就占用了一个本地端口。这样在TIME_WAIT状态结束之前,本地最多就能承受6万个TIME_WAIT状态的连接,就无端口可用了。

    客户端与服务端进行短连接的TCP通信,如果在同一台机器上进行压力测试模拟上万的客户请求,并且循环与服务端进行短连接通信,那么这台机器将产生4000个左右的TIME_WAIT socket,后续的短连接就会产生address already in use : connect的异常。

    关闭的时候使用RST的方式,不进入 TIME_WAIT状态,是否可行?

    --------------服务端主动关闭连接------------------------------

    服务端提供在服务时,一般监听一个端口就够了。例如Apach监听80端口。

    客户端则是使用一个本地的空闲端口(大于1024),与服务端的Apache的80端口建立连接。

    当通信时使用短连接,并由服务端主动关闭连接时,主动关闭连接的服务端会产生TIME_WAIT状态的连接。

    由于都连接到服务端80端口,服务端的TIME_WAIT状态的连接会有很多个。

    假如server一秒钟处理1000个请求,那么就会积压240秒*1000=24万个TIME_WAIT的记录,服务有能力维护这24万个记录。

    大多数服务器端一般执行被动关闭,服务器不会进入TIME_WAIT状态。

    服务端为了解决这个TIME_WAIT问题,可选择的方式有三种:

        Ø  保证由客户端主动发起关闭(即做为B端)

        Ø  关闭的时候使用RST的方式

        Ø  对处于TIME_WAIT状态的TCP允许重用

    一般Apache的配置是:

    Timeout 30  

    KeepAlive On   #表示服务器端不会主动关闭链接  

    MaxKeepAliveRequests 100  

    KeepAliveTimeout 180  

    表示:Apache不会主动关闭链接,

    两种情况下Apache会主动关闭连接:

    1、Apache收到了http协议头中有客户端要求Apache关闭连接信息,如setRequestHeader("Connection", "close");  

    2、连接保持时间达到了180秒的超时时间,将关闭。

    如果配置如下:

    KeepAlive Off   #表示服务器端会响应完数据后主动关闭链接  

    --------------有代理时------------------------------

    nginx代理使用了短链接的方式和后端交互,如果使用了nginx代理,那么系统TIME_WAIT的数量会变得比较多,这是由于nginx代理使用了短链接的方式和后端交互的原因,使得nginx和后端的ESTABLISHED变得很少而TIME_WAIT很多。这不但发生在安装nginx的代理服务器上,而且也会使后端的app服务器上有大量的TIME_WAIT。查阅TIME_WAIT资料,发现这个状态很多也没什么大问题,但可能因为它占用了系统过多的端口,导致后续的请求无法获取端口而造成障碍。

    对于大型的服务,一台server搞不定,需要一个LB(Load Balancer)把流量分配到若干后端服务器上,如果这个LB是以NAT方式工作的话,可能会带来问题。假如所有从LB到后端Server的IP包的source address都是一样的(LB的对内地址),那么LB到后端Server的TCP连接会受限制,因为频繁的TCP连接建立和关闭,会在server上留下TIME_WAIT状态,而且这些状态对应的remote address都是LB的,LB的source port撑死也就60000多个(2^16=65536,1~1023是保留端口,还有一些其他端口缺省也不会用),每个LB上的端口一旦进入Server的TIME_WAIT黑名单,就有240秒不能再用来建立和Server的连接,这样LB和Server最多也就能支持300个左右的连接。如果没有LB,不会有这个问题,因为这样server看到的remote address是internet上广阔无垠的集合,对每个address,60000多个port实在是够用了。

    一开始我觉得用上LB会很大程度上限制TCP的连接数,但是实验表明没这回事,LB后面的一台Windows Server 2003每秒处理请求数照样达到了600个,难道TIME_WAIT状态没起作用?用Net Monitor和netstat观察后发现,Server和LB的XXXX端口之间的连接进入TIME_WAIT状态后,再来一个LB的XXXX端口的SYN包,Server照样接收处理了,而是想像的那样被drop掉了。翻书,从书堆里面找出覆满尘土的大学时代买的《UNIX Network Programming, Volume 1, Second Edition: Networking APIs: Sockets and XTI》,中间提到一句,对于BSD-derived实现,只要SYN的sequence number比上一次关闭时的最大sequence number还要大,那么TIME_WAIT状态一样接受这个SYN,难不成Windows也算BSD-derived?有了这点线索和关键字(BSD),找到这个post,在NT4.0的时候,还是和BSD-derived不一样的,不过Windows Server 2003已经是NT5.2了,也许有点差别了。

    做个试验,用Socket API编一个Client端,每次都Bind到本地一个端口比如2345,重复的建立TCP连接往一个Server发送Keep-Alive=false的HTTP请求,Windows的实现让sequence number不断的增长,所以虽然Server对于Client的2345端口连接保持TIME_WAIT状态,但是总是能够接受新的请求,不会拒绝。那如果SYN的Sequence Number变小会怎么样呢?同样用Socket API,不过这次用Raw IP,发送一个小sequence number的SYN包过去,Net Monitor里面看到,这个SYN被Server接收后如泥牛如海,一点反应没有,被drop掉了。

    按照书上的说法,BSD-derived和Windows Server 2003的做法有安全隐患,不过至少这样至少不会出现TIME_WAIT阻止TCP请求的问题,当然,客户端要配合,保证不同TCP连接的sequence number要上涨不要下降。

    -------------------------------------------

    Q: 我正在写一个unix server程序,不是daemon,经常需要在命令行上重启它,绝大多数时候工作正常,但是某些时候会报告"bind: address in use",于是重启失败。 

    A: Andrew Gierth 

    server程序总是应该在调用bind()之前设置SO_REUSEADDR套接字选项。至于 TIME_WAIT状态,你无法避免,那是TCP协议的一部分。

    Q: 编写 TCP/SOCK_STREAM 服务程序时,SO_REUSEADDR到底什么意思? 

    A: 这个套接字选项通知内核,如果端口忙,但TCP状态位于 TIME_WAIT ,可以重用 端口。如果端口忙,而TCP状态位于其他状态,重用端口时依旧得到一个错误信息, 指明"地址已经使用中"。如果你的服务程序停止后想立即重启,而新套接字依旧 使用同一端口,此时 SO_REUSEADDR 选项非常有用。必须意识到,此时任何非期 望数据到达,都可能导致服务程序反应混乱,不过这只是一种可能,事实上很不 可能。 

    一个套接字由相关五元组构成,协议、本地地址、本地端口、远程地址、远程端 口。
    SO_REUSEADDR 仅仅表示可以重用本地本地地址、本地端口,整个相关五元组 还是唯一确定的。
    所以,重启后的服务程序有可能收到非期望数据。必须慎重使用 SO_REUSEADDR 选项。 



    ========================================================================

    TCP关闭问题详细介绍

    ========================================================================

    摘要: 三次握手,四次挥手

    意思是tcp建立连接时需要三次交互来完成,A发起连接

    1
    2
    3
    A ---  SYN  --> B
    A <-- SYN + ACK --- B (1)
    A ---  ACK  --> B

    而关闭tcp连接需要四次交互,A发起关闭

    1
    2
    3
    4
    A --- FIN --> B
    A <-- ACK --- B (1)
    A <-- FIN --- B
    A --- ACK --> B (2)

    这里在(1)时B开始处于CLOSE_WAIT状态,一直到收到ACK后B才转为CLOSED ,而A就处于TIME_WAIT状态,一直到2MSL(Max Segament Lifetime)才转为CLOSED

    为什么需要2MSL才真正转为CLOSED?是因为需要缓冲时间万一B丢失ACK重发FIN的话还可以回复ACK,还有就是2MSL后“迷失”在网络上的包全部失效

    大量的 TIME_WAIT 和 CLOSE_WAIT 会造成服务器的连接资源被浪费甚至占满后导致服务器服务拒绝,怎么解决?

    解决TIME_WAIT

    1
    2
    3
    4
    5
    net.ipv4.tcp_tw_recycle = 1 #开启快速回收,默认0
     
    net.ipv4.tcp_tw_reuse = 1 #开启重用,默认0
     
    net.ipv4.tcp_fin_timeout = 30 # 减小fin_timeout,默认60,单位s

    系统参数的配置可以解决time_wait,但是close_wait就没那么简单了

    解决CLOSE_WAIT

    一般都是服务端的代码问题。

    绝大多数都是客户端发起关闭,这样可知HTTP服务器应该会有很多TIME_WAIT,不过当http使用keep-alive后服务端会主动断连。

  • 相关阅读:
    【小梅哥SOPC学习笔记】Altera SOPC嵌入式系统设计教程
    modelsim使用常见问题及解决办法集锦③
    modelsim使用常见问题及解决办法集锦 ②
    KeepAlived双主模式高可用集群
    充分利用nginx的reload功能平滑的上架和更新业务
    nginx日志配置指令详解
    MongoDB 副本集
    MongoDB 备份还原
    MongoDB的搭建、参数
    mongoDB整个文件夹拷贝备份还原的坑
  • 原文地址:https://www.cnblogs.com/sea520/p/12612128.html
Copyright © 2011-2022 走看看