zoukankan      html  css  js  c++  java
  • 测试114 概率期望,单调栈,树上倍增

    T2:

    单独考虑每个点的贡献是一种期望技巧。

    相关性。单点贡献与其他点无关。

    思路:先把问题拆分,化成a[1]+sigma:f[i].

    既然能把问题拆分,考虑能否把贡献拆分,单独算。

    只考虑一部分贡献,拿去无关的。

    则式子只与a[i]a[1]有关。

    注意:假设a[i],a[1]都未取净,概率是1/2.

    若取净概率无法算。

    解决:1-其他情况的概率(已算出)

    技巧:求概率用1减去已知得到未知。

    考场柿子问题:

    想把除a[1]外数压到一起,转化成多维,从(0,0,0走到(a[1],[2],[3])方案数

    但每个方案概率不同。

    a[1]与选其他的概率不是1:1,是1:cnt.所以不能简单乘1/2

    想到期望单点算贡献而非dp:

    Dp无法描述。数据范围大。

    当然暴力部分分可以DP。优于搜索。

    细节:i=0也有概率。

    组合数处理到1e6. 5e5+5e5

    T3:

    变量名uv和xy用混,暴力写挂30分。

    大神题,暂未改出来。

    T1:调试2h。注意:单调栈1、斜率递增,2、交点递减。

  • 相关阅读:
    论抱怨
    GitHub开源的10个超棒后台管理面板
    RESTful API 最佳实践
    理解RESTful架构
    redis 数据类型详解 以及 redis适用场景场合
    redis的应用场景 为什么用redis
    composer install 出现的问题
    什么是反向代理
    电脑 DNS纪要
    ajax请求处理概要
  • 原文地址:https://www.cnblogs.com/seamtn/p/11855916.html
Copyright © 2011-2022 走看看