zoukankan      html  css  js  c++  java
  • redis缓存雪崩,击穿,穿透(copy)

    一、缓存雪崩

    缓存雪崩我们可以简单的理解为:由于原有缓存失效,新缓存未到期间(例如:我们设置缓存时采用了相同的过期时间,在同一时刻出现大面积的缓存过期),所有原本应该访问缓存的请求都去查询数据库了,而对数据库CPU和内存造成巨大压力,严重的会造成数据库宕机。从而形成一系列连锁反应,造成整个系统崩溃。

    缓存正常从Redis中获取,示意图如下:

    阿里P8技术专家细究分布式缓存问题

    缓存失效瞬间示意图如下:

    阿里P8技术专家细究分布式缓存问题

    缓存雪崩的解决方案:

    (1)碰到这种情况,一般并发量不是特别多的时候,使用最多的解决方案是加锁排队,伪代码如下:

    加锁排队只是为了减轻数据库的压力,并没有提高系统吞吐量。假设在高并发下,缓存重建期间key是锁着的,这是过来1000个请求999个都在阻塞的。同样会导致用户等待超时,这是个治标不治本的方法!

    注意:加锁排队的解决方式分布式环境的并发问题,有可能还要解决分布式锁的问题;线程还会被阻塞,用户体验很差!因此,在真正的高并发场景下很少使用!

    (2)给每一个缓存数据增加相应的缓存标记,记录缓存的是否失效,如果缓存标记失效,则更新数据缓存,实例伪代码如下:

    解释说明:

    1、缓存标记:记录缓存数据是否过期,如果过期会触发通知另外的线程在后台去更新实际key的缓存;

    2、缓存数据:它的过期时间比缓存标记的时间延长1倍,例:标记缓存时间30分钟,数据缓存设置为60分钟。 这样,当缓存标记key过期后,实际缓存还能把旧数据返回给调用端,直到另外的线程在后台更新完成后,才会返回新缓存。

    关于缓存崩溃的解决方法,这里提出了三种方案:使用锁或队列、设置过期标志更新缓存、为key设置不同的缓存失效时间,还有一各被称为“二级缓存”的解决方法,有兴趣的读者可以自行研究。

    (3) 或者设置热点数据永远不过期,有更新操作就更新缓存就好了

    二、缓存穿透

    1.缓存穿透是指用户查询数据,在数据库没有,自然在缓存中也不会有。这样就导致用户查询的时候,在缓存中找不到,每次都要去数据库再查询一遍,然后返回空(相当于进行了两次无用的查询)。这样请求就绕过缓存直接查数据库,这也是经常提的缓存命中率问题。

    2.缓存穿透是指缓存和数据库中都没有的数据,而用户不断发起请求,我们数据库的 id 都是1开始自增上去的,如发起为id值为 -1 的数据或 id 为特别大不存在的数据。这时的用户很可能是攻击者,攻击会导致数据库压力过大,严重会击垮数据库。

    缓存穿透解决方案:

    (1)采用布隆过滤器(Bloom Filter),将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。

    (2)如果一个查询返回的数据为空(不管是数据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。通过这个直接设置的默认值存放到缓存,这样第二次到缓存中获取就有值了,而不会继续访问数据库,这种办法最简单粗暴!

    把空结果也给缓存起来,这样下次同样的请求就可以直接返回空了,即可以避免当查询的值为空时引起的缓存穿透。同时也可以单独设置个缓存区域存储空值,对要查询的key进行预先校验,然后再放行给后面的正常缓存处理逻辑。

    二、缓存击穿

    缓存击穿嘛,这个跟缓存雪崩有点像,但是又有一点不一样,缓存雪崩是因为大面积的缓存失效,打崩了DB,而缓存击穿不同的是缓存击穿是指一个Key非常热点,在不停的扛着大并发,大并发集中对这一个点进行访问,当这个Key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一个完好无损的桶上凿开了一个洞

    缓存穿透解决方案:
    1.从缓存取不到的数据,在数据库中也没有取到,这时也可以将对应Key的Value对写为null、位置错误、稍后重试这样的值具体取啥问产品,或者看具体的场景,缓存有效时间可以设置短点,如30秒(设置太长会导致正常情况也没法使用)
    2.缓存穿透我会在接口层增加校验,比如用户鉴权校验,参数做校验,不合法的参数直接代码Return,比如:id 做基础校验,id <=0的直接拦截等
    3.缓存击穿的话,设置热点数据永远不过期,或者加上互斥锁就能搞定了
    4.使用布隆过滤器(Bloom Filter)他的原理也很简单就是利用高效的数据结构和算法快速判断出你这个Key是否在数据库中存在,不存在你return就好了,存在你就去查了DB刷新KV再return。

    三、缓存预热

    缓存预热就是系统上线后,提前将相关的缓存数据直接加载到缓存系统。避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题!用户直接查询事先被预热的缓存数据!

    缓存预热解决方案:

    (1)直接写个缓存刷新页面,上线时手工操作下;

    (2)数据量不大,可以在项目启动的时候自动进行加载;

    (3)定时刷新缓存;

    四、缓存更新

    除了缓存服务器自带的缓存失效策略之外(Redis默认的有6中策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种:

    (1)定时去清理过期的缓存;

    (2)当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。

    两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,大家可以根据自己的应用场景来权衡。

    五、缓存降级

    当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。

    降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。

    在进行降级之前要对系统进行梳理,看看系统是不是可以丢卒保帅;从而梳理出哪些必须誓死保护,哪些可降级;比如可以参考日志级别设置预案:

    (1)一般:比如有些服务偶尔因为网络抖动或者服务正在上线而超时,可以自动降级;

    (2)警告:有些服务在一段时间内成功率有波动(如在95~100%之间),可以自动降级或人工降级,并发送告警;

    (3)错误:比如可用率低于90%,或者数据库连接池被打爆了,或者访问量突然猛增到系统能承受的最大阀值,此时可以根据情况自动降级或者人工降级;

    (4)严重错误:比如因为特殊原因数据错误了,此时需要紧急人工降级。

    总结

    一般避免以上情况发生我们从三个时间段去分析下:

    • 事前:Redis 高可用,主从+哨兵,Redis cluster,避免全盘崩溃。

    • 事中:本地 ehcache 缓存 + Hystrix 限流+降级,避免** MySQL** 被打死。

    • 事后:Redis 持久化 RDB+AOF,一旦重启,自动从磁盘上加载数据,快速恢复缓存数据。

    上面的几点我会在吊打系列Redis篇全部讲一下这个月应该可以吧Redis更完,限流组件,可以设置每秒的请求,有多少能通过组件,剩余的未通过的请求,怎么办?走降级!可以返回一些默认的值,或者友情提示,或者空白的值。

    好处:

    数据库绝对不会死,限流组件确保了每秒只有多少个请求能通过。 只要数据库不死,就是说,对用户来说,3/5 的请求都是可以被处理的。 只要有 3/5 的请求可以被处理,就意味着你的系统没死,对用户来说,可能就是点击几次刷不出来页面,但是多点几次,就可以刷出来一次。

  • 相关阅读:
    Homework
    自我介绍,恩。。算是吧
    What ASP.NET Developers Should Know About JavaScript
    短信猫软件的C#实现系列文章
    装箱与拆箱
    HTML的基本标签
    CSS基础用法
    ajaxToolkit:AutoCompleteExtender 用法详解
    比较强大的分页存储过程
    不知道写点什么
  • 原文地址:https://www.cnblogs.com/seanpan/p/13993497.html
Copyright © 2011-2022 走看看