zoukankan      html  css  js  c++  java
  • MySQL Fabric 分片性能测试

    苦逼的人生,开始了新一轮调研。这次是上面要看 MySQL Fabric 分片性能,好吧,开搞。

    1 啥是 MySQL Fabric

    其实就是一个Python进程和应用端的Connector的组合。来一张官方图:

    看到了吧,Fabric就是会启动一个python daemon进程作为xml rpc服务器,应用端的Connector会自动连接这个服务器获取信息判断该连接哪个MySQL服务器。Fabric服务器还会监控各个HA组,出现问题时自动切换主从。尼玛这性能能好才有鬼呢!

    2 前置条件

    • 需要 MySQL 版本 > 5.6.
    • 需要单独一台 MySQL 作为Fabric服务器的 backing store.
    • 各个受控的 MySQL 服务器要求打开: gtid_mode (GTID), bin_log (binary logging), 和 log_slave_updates ,并且 server_id 不能有冲突.
    • 需要 Python > 2.6.
    • 如果是写Java程序的话, Connector/J 版本 > 5.1.27.

    3 安装 Fabric

    官方文档说从1.6开始Fabric从MySQL Utilities里独立出来了,但是坑爹的是看了半天论坛又发现并没有1.6的包。最新就是1.5.6,请老实下载MySQL Utilities 1.5.6并安装吧,少年!

    这里先提供一份我的 fabric.cnf 配置文件,具体就是配置 Fabric 的数据库信息,受控服务器的3种账号,客户端连接 Fabric 服务器使用 XmlRpc 或 MySQL 协议的信息。我这里把disable_authentication 打开了,取消连接 Fabric 时需要的验证,因为需要验证的情况我没试成功,总是 Permission Denie.

    #fabric.cnf

    [DEFAULT]

    prefix =

    sysconfdir = /home/will

    logdir = /var/log

     

    [storage]

    address = 10.202.8.33:23308

    user = root

    password = root123

    database = mysql_fabric

    auth_plugin = mysql_native_password

    connection_timeout = 6

    connection_attempts = 6

    connection_delay = 1

     

    [servers]

    user = root

    password = root123

    backup_user = root

    backup_password = root123

    restore_user = root

    restore_password = root123

    unreachable_timeout = 5

     

    [protocol.xmlrpc]

    address = 10.202.8.33:32274

    threads = 5

    user = admin

    password = root123

    disable_authentication = yes

    realm =

    ssl_ca =

    ssl_cert =

    ssl_key =

     

    [protocol.mysql]

    address = 10.202.8.33:32275

    user = admin

    password = root123

    disable_authentication = yes

    ssl_ca =

    ssl_cert =

    ssl_key =

     

    [executor]

    executors = 5

     

    [logging]

    level = INFO

    url = file:///var/log/fabric.log

     

    [sharding]

    mysqldump_program = /usr/bin/mysqldump

    mysqlclient_program = /usr/bin/mysql

     

    [statistics]

    prune_time = 3600

     

    [failure_tracking]

    notifications = 300

    notification_clients = 50

    notification_interval = 60

    failover_interval = 0

    detections = 3

    detection_interval = 6

    detection_timeout = 1

    prune_time = 3600

     

    [connector]

    ttl = 1

    4 安装数据库

    做分片需要至少2台分片用服务器,1台全局服务器存不分片数据(这台的数据会同步的前2台分片服务器上),1台做back store,总共4台MySQL。记得打开: gtid_mode (GTID), bin_log (binary logging), 和 log_slave_updates。我这里打算用mysqld_multi启动多台实例,哈哈48 核,192G内存的机器。

    #my.cnf

    [mysqld1]

    port            = 23306

    socket          =/home/will/mysql/mysql.sock

    datadir         =/home/will/mysql/data

    pid-file        =/home/will/mysql/mysql.pid

    user            =mysql

     

    log-bin         =master-bin

    log-bin-index   =master-bin.index

    binlog_format   = ROW

    binlog-row-image= minimal

    binlog-do-db    =rcc_will

    server-id       =1

     

    symbolic-links  =0

    character_set_server=utf8

    skip-external-locking

    innodb_flush_log_at_trx_commit = 2

    default-storage-engine =innodb

    slave-skip-errors=all

    max_binlog_size=200M

    enforce-gtid-consistency = ON

    gtid-mode = ON

    log_slave_updates

    master_info_repository = TABLE

    relay_log_info_repository = TABLE

     

    [mysqld2]

    port            = 23307

    socket          = /home/will/mysql2/mysql.sock

    datadir         =/home/will/mysql2/data

    pid-file        =/home/will/mysql2/mysql.pid

    user            =mysql

     

    server-id       =2

     

    log-bin         =master-bin

    log-bin-index   =master-bin.index

    binlog_format   = ROW

    binlog-row-image= minimal

    binlog-do-db    =rcc_will

     

    symbolic-links  =0

    character_set_server=utf8

    skip-external-locking

    innodb_flush_log_at_trx_commit = 2

    default-storage-engine =innodb

    slave-skip-errors=all

    max_binlog_size=200M

    enforce-gtid-consistency = ON

    gtid-mode = ON

    log_slave_updates

    master_info_repository = TABLE

    relay_log_info_repository = TABLE

     

    [mysqld_back]

    port            = 23308

    socket          = /home/will/mysql3/mysql.sock

    datadir         =/home/will/mysql3/data

    pid-file        =/home/will/mysql3/mysql.pid

    user            =mysql

     

    server-id       =3

     

    symbolic-links  =0

    character_set_server=utf8

    skip-external-locking

    innodb_flush_log_at_trx_commit = 2

    default-storage-engine =innodb

    slave-skip-errors=all

    max_binlog_size=200M

    enforce-gtid-consistency = ON

    gtid-mode = ON

    log_slave_updates

    master_info_repository = TABLE

    relay_log_info_repository = TABLE

     

    [mysqld_global]

    port            = 23309

    socket          = /home/will/mysql4/mysql.sock

    datadir         =/home/will/mysql4/data

    pid-file        =/home/will/mysql4/mysql.pid

    user            =mysql

     

    server-id       =4

    log-bin         =master-bin

    log-bin-index   =master-bin.index

    binlog_format   = ROW

    binlog-row-image= minimal

    binlog-do-db    =rcc_will

     

    symbolic-links  =0

    character_set_server=utf8

    skip-external-locking

    innodb_flush_log_at_trx_commit = 2

    default-storage-engine =innodb

    slave-skip-errors=all

    max_binlog_size=200M

    enforce-gtid-consistency = ON

    gtid-mode = ON

    log_slave_updates

    master_info_repository = TABLE

    relay_log_info_repository = TABLE

    5 初始化Fabric

    先初始化 Backing Store 即 Fabric 服务器的 MySQL:

    mysqlfabric --config=./fabric.cnf manage setup

    再启动 Fabric 服务器:

    mysqlfabric manage start

    6 分组搞分片

    Fabric的HA是按组来搞得,每个组的服务器组成主从并且可以自动切换。我这里每组就一台好了,主要是测分片嘛。

    先来3个组:

    mysqlfabric --config=./fabric.cnf group create my_group1

    mysqlfabric --config=./fabric.cnf group create my_group2

    mysqlfabric --config=./fabric.cnf group create my_group_global

    再把服务器加入:

    mysqlfabric --config=./fabric.cnf group add my_group1 10.202.8.33:23306

    mysqlfabric --config=./fabric.cnf group add my_group2 10.202.8.33:23307

    mysqlfabric --config=./fabric.cnf group add my_group_global 10.202.8.33:23309

    搞起HA:

    mysqlfabric --config=./fabric.cnf group promote my_group1

    mysqlfabric --config=./fabric.cnf group promote my_group2

    mysqlfabric --config=./fabric.cnf group promote my_group_global

    激活自动切换,这步可选:

    mysqlfabric --config=./fabric.cnf group activate my_group1

    mysqlfabric --config=./fabric.cnf group activate my_group2

    mysqlfabric --config=./fabric.cnf group activate my_group_global

    定义分片的mapping(全局组,分片策略HASH):

    mysqlfabric --config=./fabric.cnf sharding create_definition HASH my_group_global

    给定义好的mapping(id 1)添加分片的table和列:

    mysqlfabric --config=./fabric.cnf sharding add_table 1 db_will.db_users name

    添加分片组:

    mysqlfabric --config=./fabric.cnf sharding add_shard 1 "my_group1, my_group2" --state=ENABLED

    7 创建数据库

    这里需要在mysqld_global那台机器上手动create database db_will,然后就自动同步到其他服务器了。

    8 Java客户端

    // 数据源
    FabricMySQLDataSource ds = new FabricMySQLDataSource();
    ds.setServerName("10.202.8.33");
    ds.setPort(32274);
    ds.setDatabaseName("db_will");
    ds.setFabricShardTable("db_users");
    ds.setUser("root");
    ds.setPassword("root123");
    
    //创建表
    JDBC4FabricMySQLConnection conn = (JDBC4FabricMySQLConnection) ds.getConnection();
    Statement stat = conn.createStatement();
    stat.execute(“CREATE TABLE `db_users` ( … ”);
    
    //插入数据
    JDBC4FabricMySQLConnection conn = (JDBC4FabricMySQLConnection) ds.getConnection();
    PreparedStatement stat = conn.prepareStatement("insert into db_users (`name`) values (?)");
    for (long i = 0; i < 20 * 1024 * 1024; i++) {
         conn.setShardKey(String.valueOf(i));
         stat.setString(1, String.valueOf(i));
         stat.executeUpdate();
    }
    
    //查询数据
    conn.setShardKey(imsi);
    ResultSet rs = stat.executeQuery("SELECT * FROM `db_users` WHERE name=" + name);
    

    可以看到主要是通过conn.setShardKey来实现选择分片组的。

    9 性能

    插入20M的数据,尼玛花了5个小时,每秒也就1000条吧。

    然后增删改查基本都在20毫秒的级别。

    最后同时查询也就能达到130个连接,再多就挂了,python服务器撑不住啊。

  • 相关阅读:
    【iOS开发】协议与委托 (Protocol and Delegate) 实例解析(转)
    Axure例——双击显示
    联动下拉菜单应用
    VB 9.0 和C# 3.0比较
    Office VBA进阶(二):如何在Access 2007里导入一个Excel sheet表
    Static Code Analysis Introduction
    VB future
    Office VBA进阶(三):如何合并Access里的多张表
    Office VBA进阶(四):如何在Access里创建一个Report
    Office VBA进阶(五):如何让EXCEL工作簿在浏览器里显示
  • 原文地址:https://www.cnblogs.com/seasonsluo/p/fabric.html
Copyright © 2011-2022 走看看