拉链表需求:
1.数据量比较大
2.变化的比例和频率比较小,例如客户的住址信息,联系方式等,比如有1千万的用户数据,每天全量存储会存储很多不变的信息,对存储也是浪费,因此可以使用拉链表的算法来节省存储空间
3.拉链历史表,既能反映每个客户不同时间的不同状态,也可查看某个时间点的全量快照信息
拉链表设计
设计的拉链历史表:
反映A客户的状态信息
select * from ods_account where cst_id='A';
反映20190601历史数据:
select * from ods_account where eff_date<='20190601' and end_date>'20190601';
反映20190602历史全量数据:
select * from ods_account where eff_date<='20190602' and end_date>'20190602';
建表:
use edw;
drop table if exists src_account;
create table if not exists src_account(
cst_id varchar(64) comment '客户唯一编号',
bal float comment '余额',
date_id varchar(16) comment '日期'
)ENGINE=InnoDB DEFAULT CHARSET=utf8;
alter table src_account add primary key(cst_id,date_id);
drop table if exists delta_account;
create table if not exists delta_account(
cst_id varchar(64) comment '客户唯一编号',
bal float comment '余额',
etl_flag varchar(16) comment 'ETL标记'
)ENGINE=InnoDB DEFAULT CHARSET=utf8;
alter table delta_account add primary key(cst_id,etl_flag);
drop table if exists odshis_account;
create table if not exists odshis_account(
cst_id varchar(64) comment '客户唯一编号',
bal float comment '余额',
eff_date varchar(16) comment '生效日期',
end_date varchar(16) comment '失效日期',
job_seq_id varchar(16) comment '批次号',
new_job_seq_id varchar(16) comment '最新批次号'
)ENGINE=InnoDB DEFAULT CHARSET=utf8;
alter table odshis_account add primary key(cst_id,new_job_seq_id);
drop table if exists ods_account;
create table if not exists ods_account(
cst_id varchar(64) comment '客户唯一编号',
bal float comment '余额',
eff_date varchar(16) comment '生效日期',
end_date varchar(16) comment '失效日期',
job_seq_id varchar(16) comment '批次号'
)ENGINE=InnoDB DEFAULT CHARSET=utf8;
alter table ods_account add primary key(cst_id,eff_date,end_date);
加载原始数据:
delete from src_account;
insert into src_account values('A','20','20190601');
insert into src_account values('B','30','20190601');
insert into src_account values('C','50','20190601');
insert into src_account values('D','35','20190601');
insert into src_account values('A','20','20190602');
insert into src_account values('B','50','20190602');
insert into src_account values('D','20','20190602');
insert into src_account values('E','50','20190602');
insert into src_account values('A','30','20190603');
insert into src_account values('B','50','20190603');
insert into src_account values('C','50','20190603');
insert into src_account values('D','20','20190603');
insert into src_account values('A','30','20190604');
insert into src_account values('B','40','20190604');
insert into src_account values('C','30','20190604');
insert into src_account values('D','20','20190604');
insert into src_account values('E','20','20190604');
insert into src_account values('F','20','20190604');
insert into src_account values('G','