zoukankan      html  css  js  c++  java
  • 算法的时间复杂度详解

        一般情况下,算法中基本操作重复执行的次数是问题规模 n 的某个函数 f(n) 算法的时间度量记作 T(n) = O(f(n)),他表示随着问题规模n增大,算法执行时间的增长率和 f(n) 的增长率相同,乘坐算法的渐进时间复杂度(Asymptotic Time Complexity),简称时间复杂度


        算法时间复杂度从小到大依次是: O(1) < O(logn) < O(n) < O(nlogn) < O(n2< O(n3) < O(2n) < O(n!) <O(nn

        时间复杂度越高,算法消耗cpu就越高,执行速度就越慢。


       分析时间复杂度代码举例如下:

    int sum = 1, n = 100;

    O(1):

    sum = (1 + n) * n / 2;


    O(logn):

    while((sum < n){

         sum = sum * 2;

    }


    O(n):

    for(int i=0; i<n; i++){

    sum += n;

    }


    O(n2):

    for(int i = 0; i < n;  i++){

    for(int j = 0; j < n;  j++){

    sum += 1;

    }

    }


    for(int i = 0; i < n;  i++){

    for(int j = i; j < n;  j++){

    sum += 1;

    }

    }

    //上面这个循环其实没有执行到n的平方次,执行了n+(n-1)+(n-2)+...+1=n(n+1)/2=n2/2 次

    因为常数不需要计算,所以n2/2最终他的时间复杂度还是O(n2)


        算法的时间复杂度有最好,最坏和平均复杂度。比如在一个数据中查找一个数字,最好的时间复杂度为O(1),最坏的时间复杂度为O(n),平均复杂度为n/2

    那么我们称这个算法的时间复杂度为O(n),通常情况下,我们说的算法时间复杂度都是最坏时间复杂度。



  • 相关阅读:
    一般图最大匹配
    UOJ164 线段树历史最值查询
    一个经典的排列组合面试题目
    动态代理理解
    JAVA nio
    hadoop NameNode 实现分析
    以一个上传文件的例子来说 DistributedFileSystem
    hadoop IPC 源代码分析
    hadoop DataNode实现分析
    HDFS 整体把握
  • 原文地址:https://www.cnblogs.com/secbook/p/2655383.html
Copyright © 2011-2022 走看看