项目的完整代码在 C2j-Compiler
前言
在上一篇完成了符号表的构建,下一步就是输出抽象语法树(Abstract Syntax Tree,AST)
抽象语法树(abstract syntax tree 或者缩写为 AST),是源代码的抽象语法结构的树状表现形式,这里特指编程语言的源代码。树上的每个节点都表示源代码中的一种结构。
AST对于编译器是至关重要的,现在的编译型语言一般通过AST来生成IR,解释型语言也可以不用虚拟机而直接遍历AST来解释执行,之后要写解释器和编译器都依赖这个AST
这一篇主要文件有:
- AstBuilder.java
- AstNode.java
- AstNodeImpl.java
- NodeKey.java
- NodeFactory.java
主要数据结构
AST节点的表示
public interface AstNode {
AstNode addChild(AstNode node);
AstNode getParent();
ArrayList<AstNode> getChildren();
void setAttribute(NodeKey key, Object value);
Object getAttribute(NodeKey key);
boolean isChildrenReverse();
void reverseChildren();
AstNode copy();
}
这是对AstNode接口的实现,并且继承HashMap,这里的NodeKey是
TokenType, VALUE, SYMBOL, PRODUCTION, TEXT
对应的value,
- TokenType就是非终结符的类型
- Text用来存储解析对象的文本信息
- Symbol对应的就是变量的符号对象
- Value是对应对象解析的值,比如int a = 1,那么value的值就为1
public class AstNodeImpl extends HashMap<NodeKey, Object> implements AstNode {
private Token type;
private AstNodeImpl parent;
private ArrayList<AstNode> children;
String name;
private boolean isChildrenReverse = false;
public AstNodeImpl(Token type) {
this.type = type;
this.parent = null;
this.children = new ArrayList<>();
setAttribute(NodeKey.TokenType, type);
}
@Override
public AstNode addChild(AstNode node) {
if (node != null) {
children.add(node);
((AstNodeImpl) node).parent = this;
}
return node;
}
@Override
public AstNode getParent() {
return parent;
}
@Override
public void reverseChildren() {
if (isChildrenReverse) {
return;
}
Collections.reverse(children);
isChildrenReverse = true;
}
@Override
public boolean isChildrenReverse() {
return isChildrenReverse;
}
@Override
public ArrayList<AstNode> getChildren() {
reverseChildren();
return children;
}
@Override
public void setAttribute(NodeKey key, Object value) {
if (key == NodeKey.TEXT) {
name = (String) value;
}
put(key, value);
}
@Override
public Object getAttribute(NodeKey key) {
return get(key);
}
@Override
public String toString() {
String info = "";
if (get(NodeKey.VALUE) != null) {
info += "Node Value is " + get(NodeKey.VALUE).toString();
}
if (get(NodeKey.TEXT) != null) {
info += "
Node Text is " + get(NodeKey.TEXT).toString();
}
if (get(NodeKey.SYMBOL) != null) {
info += "
Node Symbol is " + get(NodeKey.SYMBOL).toString();
}
return info + "
Node Type is " + type.toString();
}
@Override
public AstNode copy() {
AstNodeImpl copy = (AstNodeImpl) NodeFactory.createICodeNode(type);
Set<Entry<NodeKey, Object>> attributes = entrySet();
Iterator<Map.Entry<NodeKey, Object>> it = attributes.iterator();
while (it.hasNext()) {
Map.Entry<NodeKey, Object> attribute = it.next();
copy.put(attribute.getKey(), attribute.getValue());
}
return copy;
}
}
NodeFactory
NodeFactory就是简单的返回一个节点的实现
public class NodeFactory {
public static AstNode createICodeNode(Token type) {
return new AstNodeImpl(type);
}
}
构造AST
AST的创建也是需要在语法分析过程中根据reduce操作进行操作的。也就是在takeActionForReduce方法中调用AstBuilder的buildSyntaxTree方法
在AstBuilder里面还是需要两个堆栈来辅助操作
private Stack<AstNode> nodeStack = new Stack<>();
private LRStateTableParser parser = null;
private TypeSystem typeSystem = null;
private Stack<Object> valueStack = null;
private String functionName;
private HashMap<String, AstNode> funcMap = new HashMap<>();
private static AstBuilder instance;
构造AST的主要逻辑在buildSyntaxTree方法里,需要注意的是有一些节点在解释执行和代码生成的时候是不一样的,有时代码生成需要的节点解释执行的话并不需要
在这里提一下UNARY这个非终结符,这个非终结符和NAME很像,但是它一般是代表进行运算和一些操作的时候,比如数组,++,--或者函数调用的时候
其实构建AST的过程和符号表的构建过程有点儿类似,都是根据reduce操作来创建信息和组合信息,符号表是组合修饰符说明符等,而AST则是组合节点间的关系变成一棵树
我们只看几个操作
-
Specifiers_DeclList_Semi_TO_Def
这个节点需要注意的是,从堆栈的什么地方拿到Symbol,这个需要从reduce次数和推导式中得出
* DEF -> SPECIFIERS DECL_LIST SEMI
* DECL -> VAR_DECL
* VAR_DECL -> NEW_NAME
* | VAR_DECL LP RP
* | VAR_DECL LP VAR_LIST RP
* | LP VAR_DECL RP
* | START VAR_DECL
从推导式可以看出,DEF节点的符号应该在valueStack.size() - 3,但是DECL和VAR_DECL没有做reduce操作,所以符号应该在valueStack.size() - 2。这其实和前面的符号表构建算出之前符号的位置是一样的。
-
TO_UNARY
这里则是变量、数字或者字符串的节点,如果是个变量的号,这个节点就需要一个Symbol的value了
case SyntaxProductionInit.Number_TO_Unary:
case SyntaxProductionInit.Name_TO_Unary:
case SyntaxProductionInit.String_TO_Unary:
node = NodeFactory.createICodeNode(Token.UNARY);
if (production == SyntaxProductionInit.Name_TO_Unary) {
assignSymbolToNode(node, text);
}
node.setAttribute(NodeKey.TEXT, text);
break;
其余的节点无非是把一些语句拆分它的逻辑然后组成节点,真正的求值部分像Name_TO_Unary比较少,更多是比如把一个if else块分成if节点、判断节点、else节点,之后再按照这棵树进行解释执行或者代码生成
public AstNode buildSyntaxTree(int production, String text) {
AstNode node = null;
Symbol symbol = null;
AstNode child = null;
if (Start.STARTTYPE == Start.INTERPRETER) {
int p1 = SyntaxProductionInit.Specifiers_DeclList_Semi_TO_Def;
int p2 = SyntaxProductionInit.Def_To_DefList;
int p3 = SyntaxProductionInit.DefList_Def_TO_DefList;
boolean isReturn = production == p1 || production == p2 || production == p3;
if (isReturn) {
return null;
}
}
switch (production) {
case SyntaxProductionInit.Specifiers_DeclList_Semi_TO_Def:
node = NodeFactory.createICodeNode(Token.DEF);
symbol = (Symbol) valueStack.get(valueStack.size() - 2);
node.setAttribute(NodeKey.SYMBOL, symbol);
break;
case SyntaxProductionInit.Def_To_DefList:
node = NodeFactory.createICodeNode(Token.DEF_LIST);
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.DefList_Def_TO_DefList:
node = NodeFactory.createICodeNode(Token.DEF_LIST);
node.addChild(nodeStack.pop());
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.Number_TO_Unary:
case SyntaxProductionInit.Name_TO_Unary:
case SyntaxProductionInit.String_TO_Unary:
node = NodeFactory.createICodeNode(Token.UNARY);
if (production == SyntaxProductionInit.Name_TO_Unary) {
assignSymbolToNode(node, text);
}
node.setAttribute(NodeKey.TEXT, text);
break;
case SyntaxProductionInit.Unary_LP_RP_TO_Unary:
node = NodeFactory.createICodeNode(Token.UNARY);
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.Unary_LP_ARGS_RP_TO_Unary:
node = NodeFactory.createICodeNode(Token.UNARY);
node.addChild(nodeStack.pop());
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.Unary_Incop_TO_Unary:
case SyntaxProductionInit.Unary_DecOp_TO_Unary:
case SyntaxProductionInit.LP_Expr_RP_TO_Unary:
case SyntaxProductionInit.Start_Unary_TO_Unary:
node = NodeFactory.createICodeNode(Token.UNARY);
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.Unary_LB_Expr_RB_TO_Unary:
node = NodeFactory.createICodeNode(Token.UNARY);
node.addChild(nodeStack.pop());
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.Uanry_TO_Binary:
node = NodeFactory.createICodeNode(Token.BINARY);
child = nodeStack.pop();
node.setAttribute(NodeKey.TEXT, child.getAttribute(NodeKey.TEXT));
node.addChild(child);
break;
case SyntaxProductionInit.Binary_TO_NoCommaExpr:
case SyntaxProductionInit.NoCommaExpr_Equal_NoCommaExpr_TO_NoCommaExpr:
node = NodeFactory.createICodeNode(Token.NO_COMMA_EXPR);
child = nodeStack.pop();
String t = (String) child.getAttribute(NodeKey.TEXT);
node.addChild(child);
if (production == SyntaxProductionInit.NoCommaExpr_Equal_NoCommaExpr_TO_NoCommaExpr) {
child = nodeStack.pop();
t = (String) child.getAttribute(NodeKey.TEXT);
node.addChild(child);
}
break;
case SyntaxProductionInit.Binary_Plus_Binary_TO_Binary:
case SyntaxProductionInit.Binary_DivOp_Binary_TO_Binary:
case SyntaxProductionInit.Binary_Minus_Binary_TO_Binary:
case SyntaxProductionInit.Binary_Start_Binary_TO_Binary:
node = NodeFactory.createICodeNode(Token.BINARY);
node.addChild(nodeStack.pop());
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.Binary_RelOP_Binary_TO_Binray:
node = NodeFactory.createICodeNode(Token.BINARY);
node.addChild(nodeStack.pop());
AstNode operator = NodeFactory.createICodeNode(Token.RELOP);
operator.setAttribute(NodeKey.TEXT, parser.getRelOperatorText());
node.addChild(operator);
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.NoCommaExpr_TO_Expr:
node = NodeFactory.createICodeNode(Token.EXPR);
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.Expr_Semi_TO_Statement:
case SyntaxProductionInit.CompountStmt_TO_Statement:
node = NodeFactory.createICodeNode(Token.STATEMENT);
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.LocalDefs_TO_Statement:
node = NodeFactory.createICodeNode(Token.STATEMENT);
if (Start.STARTTYPE == Start.CODEGEN) {
node.addChild(nodeStack.pop());
}
break;
case SyntaxProductionInit.Statement_TO_StmtList:
node = NodeFactory.createICodeNode(Token.STMT_LIST);
if (nodeStack.size() > 0) {
node.addChild(nodeStack.pop());
}
break;
case SyntaxProductionInit.FOR_OptExpr_Test_EndOptExpr_Statement_TO_Statement:
node = NodeFactory.createICodeNode(Token.STATEMENT);
node.addChild(nodeStack.pop());
node.addChild(nodeStack.pop());
node.addChild(nodeStack.pop());
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.StmtList_Statement_TO_StmtList:
node = NodeFactory.createICodeNode(Token.STMT_LIST);
node.addChild(nodeStack.pop());
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.Expr_TO_Test:
node = NodeFactory.createICodeNode(Token.TEST);
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.If_Test_Statement_TO_IFStatement:
node = NodeFactory.createICodeNode(Token.IF_STATEMENT);
node.addChild(nodeStack.pop());
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.IfElseStatemnt_Else_Statemenet_TO_IfElseStatement:
node = NodeFactory.createICodeNode(Token.IF_ELSE_STATEMENT);
node.addChild(nodeStack.pop());
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.While_LP_Test_Rp_TO_Statement:
case SyntaxProductionInit.Do_Statement_While_Test_To_Statement:
node = NodeFactory.createICodeNode(Token.STATEMENT);
node.addChild(nodeStack.pop());
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.Expr_Semi_TO_OptExpr:
case SyntaxProductionInit.Semi_TO_OptExpr:
node = NodeFactory.createICodeNode(Token.OPT_EXPR);
if (production == SyntaxProductionInit.Expr_Semi_TO_OptExpr) {
node.addChild(nodeStack.pop());
}
break;
case SyntaxProductionInit.Expr_TO_EndOpt:
node = NodeFactory.createICodeNode(Token.END_OPT_EXPR);
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.LocalDefs_StmtList_TO_CompoundStmt:
node = NodeFactory.createICodeNode(Token.COMPOUND_STMT);
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.NewName_LP_RP_TO_FunctDecl:
case SyntaxProductionInit.NewName_LP_VarList_RP_TO_FunctDecl:
node = NodeFactory.createICodeNode(Token.FUNCT_DECL);
node.addChild(nodeStack.pop());
child = node.getChildren().get(0);
functionName = (String) child.getAttribute(NodeKey.TEXT);
symbol = assignSymbolToNode(node, functionName);
break;
case SyntaxProductionInit.NewName_TO_VarDecl:
nodeStack.pop();
break;
case SyntaxProductionInit.NAME_TO_NewName:
node = NodeFactory.createICodeNode(Token.NEW_NAME);
node.setAttribute(NodeKey.TEXT, text);
break;
case SyntaxProductionInit.OptSpecifiers_FunctDecl_CompoundStmt_TO_ExtDef:
node = NodeFactory.createICodeNode(Token.EXT_DEF);
node.addChild(nodeStack.pop());
node.addChild(nodeStack.pop());
funcMap.put(functionName, node);
break;
case SyntaxProductionInit.NoCommaExpr_TO_Args:
node = NodeFactory.createICodeNode(Token.ARGS);
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.NoCommaExpr_Comma_Args_TO_Args:
node = NodeFactory.createICodeNode(Token.ARGS);
node.addChild(nodeStack.pop());
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.Return_Semi_TO_Statement:
node = NodeFactory.createICodeNode(Token.STATEMENT);
break;
case SyntaxProductionInit.Return_Expr_Semi_TO_Statement:
node = NodeFactory.createICodeNode(Token.STATEMENT);
node.addChild(nodeStack.pop());
break;
case SyntaxProductionInit.Unary_StructOP_Name_TO_Unary:
node = NodeFactory.createICodeNode(Token.UNARY);
node.addChild(nodeStack.pop());
node.setAttribute(NodeKey.TEXT, text);
break;
default:
break;
}
if (node != null) {
node.setAttribute(NodeKey.PRODUCTION, production);
nodeStack.push(node);
}
return node;
}
小结
其实构造AST和创建符号表上非常相似,都是依据reduce操作的信息来完成。在AST的构建中的主要任务就是对源代码语句里的逻辑进行分块,比如对于一个ifelse语句:
上面的图是我依据这个意思话的,和上面构造出来的AST不完全一致
另外我的github博客:https://dejavudwh.cn/