zoukankan      html  css  js  c++  java
  • .py小程序总结

    首先pycharm里面的代码格式化,也就是所说的美化快捷键【Ctrl+Alt+L】

    1、IP地址由范围打印出每个ip地址,业务中有太多的ip需要整理,所以批量处理一下,已做到一步完成大规模的重复步骤

    # -*-coding:utf-8-*-
    q = open('jieguo.txt', 'w')
    f = open('addredd.txt')
    for line in f.readlines():
        line = line.strip()
        line = line.split('-')
        val1 = line[0].split('.')
        val2 = line[1].split('.')
        title = '%s.%s.%s.' % (val1[0], val1[1], val1[2])
        ip_start = val1[3]
        ip_end = val2[3]
        # print(title,ip_strat,ip_end)
        for i in range(int(ip_start), int(ip_end) + 1):
            # my_dict = ['%s,%s'%ip_strat,ip_end]
            # print("%s%s" %(title,i))
            q.write('%s%s
    ' % (title, i))

    2、天气网北京昌平地区的天气情况

    # 天气网昌平地区爬虫案例
    import requests
    from lxml import etree
    
    
    class WeatherSpider:
    
        def __init__(self):
            # self.url = "http://www.weather.com.cn/weather/101210404.shtml"
            self.url = "http://www.weather.com.cn/weather/101010700.shtml"
            self.headers = {
                "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.119 Safari/537.36"}
    
        def get_url_content(self):
            return requests.get(self.url, headers=self.headers).content.decode()
    
        def get_weather_data(self, html):
            tmp_html = etree.HTML(html)
            tomorrow_doc = 
            tmp_html.xpath("//div[contains(@class,'con') and contains(@class,'today')]//div[@class='c7d']/ul/li[2]")[0]
            weather_data = {}
            weather_data["日期"] = tomorrow_doc.xpath("./h1/text()")[0]
            weather_data["天气"] = tomorrow_doc.xpath("./p[@class='wea']/@title")[0]
            weather_data["最高气温"] = tomorrow_doc.xpath("./p[@class='tem']/span/text()")[0]
            weather_data["最低气温"] = tomorrow_doc.xpath("./p[@class='tem']/i/text()")[0]
            weather_data["空速"] = tomorrow_doc.xpath("./p[@class='win']/i/text()")[0]
            return weather_data
    
        def run(self):
            # 获取url请求内容
            content_html = self.get_url_content()
            # 根据url内容获取天气数据
            data = self.get_weather_data(content_html)
            # 打印爬取的天气数据
    
            # data_dict = []
            # for i in data:
            #     data_dict.append()
            #     print(data_dict)
            print(data)
    
    if __name__ == '__main__':
        spider = WeatherSpider()
        spider.run()

    3、合并多个表格到一个sheet里面

    # -*- coding: utf-8 -*-
    
    # 将多个Excel文件合并成一个
    import xlrd
    import xlsxwriter
    
    
    # 打开一个excel文件
    def open_xls(file):
        fh = xlrd.open_workbook(file)
        return fh
    
    
    # 获取excel中所有的sheet表
    def getsheet(fh):
        return fh.sheets()
    
    
    # 获取sheet表的行数
    def getnrows(fh, sheet):
        table = fh.sheets()[sheet]
        return table.nrows
    
    
    # 读取文件内容并返回行内容
    def getFilect(file, shnum):
        fh = open_xls(file)
        table = fh.sheets()[shnum]
        num = table.nrows
        for row in range(num):
            rdata = table.row_values(row)
            datavalue.append(rdata)
        return datavalue
    
    
    # 获取sheet表的个数
    def getshnum(fh):
        x = 0
        sh = getsheet(fh)
        for sheet in sh:
            x += 1
        return x
    
    
    if __name__ == '__main__':
        # 定义要合并的excel文件列表
        allxls = ['F:/test/excel1.xlsx', 'F:/test/excel2.xlsx']
        # 存储所有读取的结果
        datavalue = []
        for fl in allxls:
            fh = open_xls(fl)
            x = getshnum(fh)
            for shnum in range(x):
                print("正在读取文件:" + str(fl) + "的第" + str(shnum) + "个sheet表的内容...")
                rvalue = getFilect(fl, shnum)
        # 定义最终合并后生成的新文件
        endfile = 'F:/test/excel3.xlsx'
        wb1 = xlsxwriter.Workbook(endfile)
        # 创建一个sheet工作对象
        ws = wb1.add_worksheet()
        for a in range(len(rvalue)):
            for b in range(len(rvalue[a])):
                c = rvalue[a][b]
                ws.write(a, b, c)
        wb1.close()
        print("文件合并完成")

    4、对比两个文本,查找不同的信息

    # coding=utf-8
    import re
    
    oldt = []
    newt = []
    f = open('new', encoding='utf-8')
    for a in f.readlines():
        a = a.strip()
        newt.append(a)
    f.close()
    q = open('old', encoding='utf-8')
    for b in q.readlines():
        b = b.strip()
        oldt.append(b)
    q.close()
    
    for i in newt:
        if i in oldt:
            pass
        else:
            print('%s' % i)

    5、柱状图

    import numpy as np
    import matplotlib.pyplot as plt
    
    np.random.seed(19680801)
    
    n_bins = 10
    x = np.random.randn(1000, 3)
    
    fig, axes = plt.subplots(nrows=2, ncols=2)
    ax0, ax1, ax2, ax3 = axes.flatten()
    
    colors = ['red', 'tan', 'lime']
    ax0.hist(x, n_bins, density=True, histtype='bar', color=colors, label=colors)
    ax0.legend(prop={'size': 10})
    ax0.set_title('bars with legend')
    
    ax1.hist(x, n_bins, density=True, histtype='barstacked')
    ax1.set_title('stacked bar')
    
    ax2.hist(x,  histtype='barstacked', rwidth=0.9)
    
    ax3.hist(x[:, 0], rwidth=0.9)
    ax3.set_title('different sample sizes')
    
    fig.tight_layout()
    plt.show()

    6、饼图

    # -*- coding:utf-8 -*-
    
    import matplotlib.pyplot as plt
    
    labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
    sizes = [15, 30, 45, 10]
    explode = (0, 0.1, 0, 0)  # only "explode" the 2nd slice (i.e. 'Hogs')
    
    fig1, (ax1, ax2) = plt.subplots(2)
    ax1.pie(sizes, labels=labels, autopct='%1.1f%%', shadow=True)
    ax1.axis('equal')
    ax2.pie(sizes, autopct='%1.2f%%', shadow=True, startangle=90, explode=explode,
        pctdistance=1.12)
    ax2.axis('equal')
    ax2.legend(labels=labels, loc='upper right')
    
    plt.show()

    7、柱状图

    # -*- coding:utf-8 -*-
    
    import numpy as np
    import matplotlib.pyplot as plt
    
    plt.subplot(1, 1, 1)
    
    x = np.array([1, 2, 3, 4])
    y1 = np.array([8566, 6482, 5335, 7310])
    y2 = np.array([4283, 2667, 3655, 3241])
    
    plt.bar(x, y1, width=0.3, label="任务量")
    plt.bar(x + 0.3, y2, width=0.3, label="完成量")
    # x+0.3相当于完成量的每个柱子右移0.3
    
    plt.title("全国各分区任务量", loc="center")
    
    # 添加数据标签
    for a, b in zip(x, y1):
        plt.text(a, b, b, ha='center', va="bottom", fontsize=12, color="blue")
    
    for a, b in zip(x, y2):
        plt.text(a, b, b, ha='left', va="baseline", fontsize=12, color="r")
    
    plt.xlabel('区域')
    plt.ylabel('任务情况')
    
    # 设置x轴刻度值
    plt.xticks(x + 0.15, ["东区", "西区", "南区", "北区"])
    
    plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签
    plt.rcParams['axes.unicode_minus']=False   #这两行需要手动设置
    
    plt.grid(False)
    plt.legend()  # 显示图例
    plt.show()

    8、折线图

    import numpy as np
    import random
    import xlrd
    import xlwt
    
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    
    x=[1,2,3,4,5,6,7,8,9,10]
    y=[3,4,5,6,7,8,9,10,11,12]
    
    plt.grid(True,linestyle = "-.")
    
    plt.plot(x,y,marker='*',color='green')
    
    # 设置数字标签
    for a, b in zip(x, y):
        plt.text(a, b+2, b, ha='center', va='bottom', fontsize=10)
    
    plt.ylim(0,30)
    plt.xlabel('the value of k')
    plt.ylabel('number')
    plt.title('red vs green')
    plt.show()

    9、数据生成Excel

    # -*- coding:utf-8 -*-
    
    import xlsxwriter
    
    # 创建一个excel
    workbook = xlsxwriter.Workbook("../z周联系/chart_line.xlsx")
    # 创建一个sheet
    worksheet = workbook.add_worksheet()
    # worksheet = workbook.add_worksheet("bug_analysis")
    
    # 自定义样式,加粗
    bold = workbook.add_format({'bold': 1})
    
    # --------1、准备数据并写入excel---------------
    # 向excel中写入数据,建立图标时要用到
    headings = ['Number', 'testA', 'testB']
    data = [
        ['2017-9-1', '2017-9-2', '2017-9-3', '2017-9-4', '2017-9-5', '2017-9-6'],
        [10, 40, 50, 20, 10, 50],
        [30, 60, 70, 50, 40, 30],
    ]
    
    # 写入表头
    worksheet.write_row('A1', headings, bold)
    
    # 写入数据
    worksheet.write_column('A2', data[0])
    worksheet.write_column('B2', data[1])
    worksheet.write_column('C2', data[2])
    
    # --------2、生成图表并插入到excel---------------
    # 创建一个柱状图(line chart)
    chart_col = workbook.add_chart({'type': 'line'})
    
    # 配置第一个系列数据
    chart_col.add_series({
        # 这里的sheet1是默认的值,因为我们在新建sheet时没有指定sheet名
        # 如果我们新建sheet时设置了sheet名,这里就要设置成相应的值
        'name': '=Sheet1!$B$1',
        'categories': '=Sheet1!$A$2:$A$7',
        'values':   '=Sheet1!$B$2:$B$7',
        'line': {'color': 'red'},
    })
    
    # 配置第二个系列数据
    chart_col.add_series({
        'name': '=Sheet1!$C$1',
        'categories':  '=Sheet1!$A$2:$A$7',
        'values':   '=Sheet1!$C$2:$C$7',
        'line': {'color': 'yellow'},
    })
    
    # 配置第二个系列数据(用了另一种语法)
    # chart_col.add_series({
    #     'name': ['Sheet1', 0, 2],
    #     'categories': ['Sheet1', 1, 0, 6, 0],
    #     'values': ['Sheet1', 1, 2, 6, 2],
    #     'line': {'color': 'yellow'},
    # })
    
    # 设置图表的title 和 x,y轴信息
    chart_col.set_title({'name': 'The xxx site Bug Analysis'})
    chart_col.set_x_axis({'name': 'Test number'})
    chart_col.set_y_axis({'name':  'Sample length (mm)'})
    
    # 设置图表的风格
    chart_col.set_style(1)
    
    # 把图表插入到worksheet并设置偏移
    worksheet.insert_chart('A10', chart_col, {'x_offset': 25, 'y_offset': 10})
    
    workbook.close()
  • 相关阅读:
    PHP 'ext/gd/gd.c' gdImageCrop整数符号错误漏洞
    Oracle Java SE远程安全漏洞(CVE-2013-5878)
    cordova for ios(android一样)添加插件
    Cordova for iOS[ PhoneGap]
    升级到win8.1右键响应慢
    不能运行,:framework not found SenTestingKit
    电驴服务器列表
    SQL常用代码收集
    Win2012 R2虚拟机自激活(AVMA)技术
    Win8系统本地连接显示为网络2
  • 原文地址:https://www.cnblogs.com/security-guard/p/14168155.html
Copyright © 2011-2022 走看看