zoukankan      html  css  js  c++  java
  • 卷积神经网络

    function just_one_CNN()
    load mnist_uint8;
    train_x=double(reshape(train_x',28,28,60000))/255;
    test_x=double(reshape(test_x',28,28,10000))/255;
    train_y=double(train_y')/255;
    test_y=double(test_y')/255;
    cnn.layers={struct('type','i');
                struct('type','c','outputmaps',6,'kernelsize',5);
                struct('type','s','scale',2);
                struct('type','c','outputmaps',16,'kernelsize',5);
                struct('type','s','scale',2);};
    cnn=cnnsetup(cnn,train_x,train_y);
    opts.alpha=1;
    opts.batchsizes=2;
    opts.numepoches=2;
    cnn=cnntrain(cnn,train_x,train_y,opts);
    preimage=predict();
    cnntest(cnn,preimage);
    end
    function net=cnnsetup(net,x,y)
    inputmaps=1;
    mapsize=size(x(:,:,1));
    for l=1:numel(net.layers)
        if strcmp(net.layers{l}.type,'s')
            mapsize=mapsize/net.layers{l}.scale;
            for j=1:inputmaps
                net.layers{l}.b{j}=0;
            end
        end
        if strcmp(net.layers{l}.type,'c')
            mapsize=mapsize-net.layers{l}.kernelsize+1;
            fan_out=net.layers{l}.outputmaps*net.layers{l}.kernelsize^2;
            for j=1:net.layers{l}.outputmaps
                fan_in=inputmaps*net.layers{l}.kernelsize^2;
                for i=1:inputmaps
                    net.layers{l}.k{i}{j}=(rand(net.layers{l}.kernelsize)- 0.5) * 2 * sqrt(6 / (fan_in + fan_out));
                end
                net.layers{l}.b{j}=0;
            end
            inputmaps=net.layers{l}.outputmaps;
        end
    end
    fvnum=prod(mapsize)*inputmaps;
    onum=size(y,1);
    net.ffb=zeros(onum,1);
    net.ffW=(rand(onum, fvnum) - 0.5) * 2 * sqrt(6 / (onum + fvnum));
    end
    function net=cnntrain(net,x,y,opts)
    m=size(x,3);
    numbatchs=m/opts.batchsizes;
    if rem(numbatchs, 1) ~= 0
            error('numbatches not integer');
    end
    net.rL=[];
    for i=1:opts.numepoches
        tic;
        kk=randperm(m);
        for l=1:numbatchs
            batch_x=x(:,:,kk((l-1)*opts.batchsizes+1:l*opts.batchsizes));
            batch_y=y(:,kk((l-1)*opts.batchsizes+1:l*opts.batchsizes));
            net=cnnff(net,batch_x);
            net=cnnbp(net,batch_y);
            net = cnnapplygrads(net, opts);  
            if isempty(net.rL)  
               net.rL(1) = net.L;
            end  
            net.rL(end + 1) = 0.99 * net.rL(end) + 0.01 * net.L;
        end
        toc
    end
    end
    
    function net=cnnff(net,x)
    n=numel(net.layers);
    net.layers{1}.a{1}=x;
    inputmaps=1;
    for l=2:n
        if strcmp(net.layers{l}.type,'c')
            for j=1:net.layers{l}.outputmaps
                z=zeros(size(net.layers{l-1}.a{1})-[net.layers{l}.kernelsize-1 net.layers{l}.kernelsize-1 0]);
                for i=1:inputmaps
                    z=z+convn(net.layers{l-1}.a{i},net.layers{l}.k{i}{j},'valid');
                end
                net.layers{l}.a{j}=sigm(z+net.layers{l}.b{j});
            end
            inputmaps=net.layers{l}.outputmaps;
        elseif strcmp(net.layers{l}.type,'s')
            for j=1:inputmaps
                z=convn(net.layers{l-1}.a{j},ones(net.layers{l}.scale)/(net.layers{l}.scale^2),'valid');
                net.layers{l}.a{j} = z(1 : net.layers{l}.scale : end, 1 : net.layers{l}.scale : end, :);
            end
        end
    end
    net.fv=[];
    for j=1:numel(net.layers{n}.a)
        sa=size(net.layers{n}.a{j});
        net.fv=[net.fv;reshape(net.layers{n}.a{j},sa(1)*sa(2),sa(3))];
    end
    net.o = sigm(net.ffW * net.fv + repmat(net.ffb, 1, size(net.fv, 2)));
    end
    
    function [out]=sigm(in)
    out=1./(1+exp(-in));
    end
    
    function net=cnnbp(net,y)
    n=numel(net.layers);
    net.e=net.o-y;
    net.L=1/2*sum(net.e(:).^2)/size(net.e,2);
    net.od=net.e.*(net.o.*(1-net.o));
    net.fvd=(net.ffW'*net.od);
    if strcmp(net.layers{n}.type,'c')
        net.fvd=net.fv.*(netfv.*(1-net.fv));
    end
    sa=size(net.layers{n}.a{1});
    fvnum=sa(1)*sa(2);
    for j = 1 : numel(net.layers{n}.a)
        net.layers{n}.d{j} = reshape(net.fvd(((j - 1) * fvnum + 1) : j * fvnum, :), sa(1), sa(2), sa(3));  
    end 
    for l = (n - 1) : -1 : 1                   
        if strcmp(net.layers{l}.type, 'c')      
            for j = 1 : numel(net.layers{l}.a) 
               
                net.layers{l}.d{j} = net.layers{l}.a{j} .* (1 - net.layers{l}.a{j}) .* (expand(net.layers{l + 1}.d{j}, [net.layers{l + 1}.scale net.layers{l + 1}.scale 1]) / net.layers{l + 1}.scale ^ 2);  
            end  
              
        elseif strcmp(net.layers{l}.type, 's')          
         
            for i = 1 : numel(net.layers{l}.a)           
                z = zeros(size(net.layers{l}.a{1}));  
                for j = 1 : numel(net.layers{l + 1}.a)   
                    z = z + convn(net.layers{l + 1}.d{j}, rot180(net.layers{l + 1}.k{i}{j}), 'full');  
                end  
                net.layers{l}.d{i} = z;  
            end  
        end  
    end 
    for l = 2 : n  
        if strcmp(net.layers{l}.type, 'c')  
            for j = 1 : numel(net.layers{l}.a)  
                for i = 1 : numel(net.layers{l - 1}.a)  
                    net.layers{l}.dk{i}{j} = convn(flipall(net.layers{l - 1}.a{i}), net.layers{l}.d{j}, 'valid') / size(net.layers{l}.d{j}, 3);  
                end  
                net.layers{l}.db{j} = sum(net.layers{l}.d{j}(:)) / size(net.layers{l}.d{j}, 3);  
            end  
        end  
    end
    net.dffW = net.od * (net.fv)' / size(net.od, 2);
    net.dffb = mean(net.od, 2);
    
    end
    
    function X = rot180(X)
        X = flipdim(flipdim(X, 1), 2);
    end
    
    function net = cnnapplygrads(net, opts)  
        for l = 2 : numel(net.layers)  
            if strcmp(net.layers{l}.type, 'c')  
                for j = 1 : numel(net.layers{l}.a)  
                    for ii = 1 : numel(net.layers{l - 1}.a)  
                        net.layers{l}.k{ii}{j} = net.layers{l}.k{ii}{j} - opts.alpha * net.layers{l}.dk{ii}{j};  
                    end  
                end  
                net.layers{l}.b{j} = net.layers{l}.b{j} - opts.alpha * net.layers{l}.db{j};  
            end  
        end  
      
        net.ffW = net.ffW - opts.alpha * net.dffW;  
        net.ffb = net.ffb - opts.alpha * net.dffb;  
    end    
    
    function cnntest(net, x)  
      
        net = cnnff(net, x);
        [~, h] = max(net.o);
        disp('the image data is');
        disp(h-1);
    end 
    
    function [guige]=predict()
    ff=imread('seven.png');
    tgray=rgb2gray(ff);
    tgray(1:7,:)=[];
    tgray(end-3:end,:)=[];
    tgray(:,1)=[];
    gg=imread('eight.png');
    eg=rgb2gray(gg);
    eg(1:5,:)=[];
    eg(end-4:end,:)=[];
    eg(:,1)=[];
    eg(:,end)=[];
    guige=[tgray;eg];
    guige=double(reshape(guige',28,28,2))/255;
    end
    
    function B = expand(A, S)
    if nargin < 2
        error('Size vector must be provided.  See help.');
    end
    SA = size(A); 
    if length(SA) ~= length(S)
       error('Length of size vector must equal ndims(A).  See help.')
    elseif any(S ~= floor(S))
       error('The size vector must contain integers only.  See help.')
    end
    
    T = cell(length(SA), 1);
    for ii = length(SA) : -1 : 1
        H = zeros(SA(ii) * S(ii), 1);  
        H(1 : S(ii) : SA(ii) * S(ii)) = 1;  
        T{ii} = cumsum(H);   
    end
    B = A(T{:}); 
    end
    
    function X=flipall(X)
        for i=1:ndims(X)
            X = flipdim(X,i);
        end
    end
    

    上面代码只需要放在一个just_one_CNN函数里面就能运行。

    可以任意拓展网络的层数,只需更新相应的参数就可以

    对下面两张rgb图片能够正确识别,但是要进行处理,要将图片转为灰度图,分割成大小为28x28的图片,在展开成两行向量

           

  • 相关阅读:
    数据结构 数据结构分类
    数据结构 基本概念(数据项--数据元素--数据对象)
    C++ STL标准模板库(list)
    C++ STL标准模板库(queue)
    python文件操作--字符串替换
    Python 拷贝对象(深拷贝deepcopy与浅拷贝copy)
    pyCharm使用
    Python中变量的作用域(variable scope)
    对于python,一切事物都是对象,对象基于类创建
    python主文件判断
  • 原文地址:https://www.cnblogs.com/semen/p/7103829.html
Copyright © 2011-2022 走看看