zoukankan      html  css  js  c++  java
  • 使用mapreduce清洗简单日志文件并导入hive数据库

    Result文件数据说明:

    Ip106.39.41.166,(城市)

    Date10/Nov/2016:00:01:02 +0800,(日期)

    Day10,(天数)

    Traffic: 54 ,(流量)

    Type: video,(类型:视频video或文章article

    Id: 8701(视频或者文章的id

    文件部分如下:

    1.192.25.84 2016-11-10-00:01:14 10 54 video 5551 
    1.194.144.222 2016-11-10-00:01:20 10 54 video 3589 
    1.194.187.2 2016-11-10-00:01:05 10 54 video 2212 
    1.203.177.243 2016-11-10-00:01:18 10 6050 video 7361 
    1.203.177.243 2016-11-10-00:01:19 10 72 video 7361 
    1.203.177.243 2016-11-10-00:01:22 10 6050 video 7361 
    1.30.162.63 2016-11-10-00:01:46 10 54 video 3639 
    1.84.205.195 2016-11-10-00:01:12 10 54 video 1412 
    1.85.61.18 2016-11-10-00:01:31 10 54 video 6578 
    1.85.61.37 2016-11-10-00:01:36 10 54 video 7212 
    101.200.101.13 2016-11-10-00:01:06 10 524288 video 11938 
    101.200.101.201 2016-11-10-00:01:03 10 4468 article 4779 
    101.200.101.204 2016-11-10-00:01:10 10 4468 article 11325 
    101.200.101.207 2016-11-10-00:01:08 10 4468 article 11325 

    流程:

    数据清洗:按照进行数据清洗,并将清洗后的数据导入hive数据库中

    两阶段数据清洗:

    1)第一阶段:把需要的信息从原始日志中提取出来

    ip:    199.30.25.88

    time:  10/Nov/2016:00:01:03 +0800

    traffic:  62

    文章: article/11325

    视频: video/3235

    2)第二阶段:根据提取出来的信息做精细化操作

    ip--->城市 cityIP

    date--> time:2016-11-10 00:01:03

    day: 10

    traffic:62

    type:article/video

    id:11325

    3hive数据库表结构:(将清洗出来的文件导入hive表中)

    create table if not exists data(
    mip string,
    mtime string,
    mday string,
    mtraffic bigint,
    mtype string,
    mid string)
    row format delimited fields terminated by ' ' lines terminated by ' ';//导入数据以' '分隔,' '换行

    源代码:

     

    import java.io.IOException;
    import java.lang.String;
    import java.util.*;
    import java.text.SimpleDateFormat;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.NullWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
    public class Dataclean{
           public static final SimpleDateFormat FORMAT = new SimpleDateFormat("d/MMM/yyyy:HH:mm:ss", Locale.ENGLISH); //原时间格式
           public static final SimpleDateFormat dateformat1 = new SimpleDateFormat("yyyy-MM-dd-HH:mm:ss");//现时间格式
           private  static Date parseDateFormat(String string) {         //转换时间格式
                Date parse = null;
                try {
                    parse = FORMAT.parse(string);
                } catch (Exception e) {
                    e.printStackTrace();
                }
                return parse;
            }
            public static  String[] parse(String line) {
                String ip = parseIP(line);       //ip
                String time = parseTime(line);   //时间
                String day=parseDay(line);//天数
                String type = parseType(line);     //视频video或文章article
                String id = parseId(line); //视频或者文章的id
                String traffic = parseTraffic(line);//流量
                return new String[] { ip, time,day,traffic,type,id};
            }
           
            private  static  String parseIP(String line) {     //ip
                String ip = line.split(",")[0].trim();//str.trim(); 去掉首尾空格
                return ip;
            }
           
            private  static  String parseTime(String line) {    //时间
                final int first = line.indexOf(",");
                final int last = line.indexOf(" +0800,");
                String time = line.substring(first + 1, last).trim();
                Date date = parseDateFormat(time);
                return dateformat1.format(date);
            }
            private  static  String parseDay(String line) {    //天数
             String day = line.split(",")[2].trim();
                return day;
            }
            private static  String parseTraffic(String line) {    //流量,转为int型
             String traffic= line.split(",")[3].trim();
                return traffic;
            }
            private  static String parseType(String line) { 
             String day = line.split(",")[4].replace(" ", "");
                return day;
            }
            private static String parseId(String line) {   
             String day = line.split(",")[5].replace(" ", "");//去掉所有空格
                return day;
            }
            public static class Map extends Mapper<Object, Text, Text, NullWritable> {
             public static Text word = new Text();
             public void map(Object key, Text value, Context context)throws IOException, InterruptedException {
              // 将输入的纯文本文件的数据转化成String
              String line = value.toString();
              String arr[] = parse(line);
                 word.set(arr[0]+" "+arr[1]+" "+arr[2]+" "+arr[3]+" "+arr[4]+" "+arr[5]+" ");//一定用' ',空格容易乱会有意想不到的问题
                context.write(word,NullWritable.get());
             }
            }
            public static class Reduce extends Reducer<Text, NullWritable, Text, NullWritable> {
             // 实现reduce函数
             public void reduce(Text key, Iterable<NullWritable> values,Context context) throws IOException, InterruptedException {
              context.write(key, NullWritable.get());
             }
            }
            public static void main(String[] args) throws Exception {
             Configuration conf=new Configuration();  
       System.out.println("start");
       Job job=Job.getInstance(conf);
       job.setJarByClass(Dataclean.class);
       job.setMapperClass(Map.class); 
       job.setReducerClass(Reduce.class);
          job.setOutputKeyClass(Text.class); 
          job.setOutputValueClass(NullWritable.class);//设置map的输出格式
          job.setInputFormatClass(TextInputFormat.class);
          job.setOutputFormatClass(TextOutputFormat.class);
          Path in = new Path("hdfs://localhost:9000/mapReduce/mymapreduce1/result.txt");
          Path out = new Path("hdfs://localhost:9000/mapReduce/mymapreduce1/out");
          FileInputFormat.addInputPath(job,in ); 
          FileOutputFormat.setOutputPath(job,out); 
          boolean flag = job.waitForCompletion(true);
          System.out.println(flag);
          System.exit(flag? 0 : 1);
            }
    }
     

     清洗所得部分结果如下:

     

    1.192.25.84  2016-11-10-00:01:14  10  54  video    5551
    1.194.144.222  2016-11-10-00:01:20  10  54  video    3589
    1.194.187.2  2016-11-10-00:01:05  10  54  video    2212
    1.203.177.243  2016-11-10-00:01:18  10  6050  video    7361
    1.203.177.243  2016-11-10-00:01:19  10  72  video    7361
    1.203.177.243  2016-11-10-00:01:22  10  6050  video    7361
    1.30.162.63  2016-11-10-00:01:46  10  54  video    3639
    1.84.205.195  2016-11-10-00:01:12  10  54  video    1412
    1.85.61.18  2016-11-10-00:01:31  10  54  video    6578
    1.85.61.37  2016-11-10-00:01:36  10  54  video    7212

     将清洗文件导入hive数据库表:


    hive> create table if not exists data(
        > mip string,
        > mtime string,
        > mday string,
        > mtraffic bigint,
        > mtype string,
        > mid string)
        > row format delimited fields terminated by ' ' lines terminated by ' ';
    OK
    Time taken: 0.135 seconds
    hive> load data local inpath "/home/hadoop/out" into table data; //注:table后边的data是表名,前一个data不用动
    Loading data to table default.data
    Table default.data stats: [numFiles=1, totalSize=63923]
    OK
    Time taken: 0.315 seconds
    hive> select * from data limit 3;
    OK
    1.192.25.84 2016-11-10-00:01:14 10 54 video 5551
    1.194.144.222 2016-11-10-00:01:20 10 54 video 3589
    1.194.187.2 2016-11-10-00:01:05 10 54 video 2212
    Time taken: 0.124 seconds, Fetched: 3 row(s)
    hive>

     查看数据库表数据:

     

  • 相关阅读:
    4.文本规范化处理
    2.自动文本分类
    3.文本分类的蓝图
    1.什么是文本分类
    2.文本规范化
    Python 处理和理解文本
    1.文本切分
    验证码识别
    随机函数
    Java编程思想笔记(多态)
  • 原文地址:https://www.cnblogs.com/sengzhao666/p/11850849.html
Copyright © 2011-2022 走看看