zoukankan      html  css  js  c++  java
  • Logistic Regression Using Gradient Descent -- Binary Classification 代码实现

    1. 原理

    Cost function

    Theta

    2. Python

    # -*- coding:utf8 -*-
    import numpy as np
    import matplotlib.pyplot as plt
    
    
    def cost_function(input_X, _y, theta):
        """
        cost function of binary classification using logistic regression
        :param input_X: np.matrix input X
        :param _y: np.matrix y
        :param theta: np.matrix theta
        """
        m = input_X.shape[0]
        z = input_X * theta
        h = np.asmatrix(1 / np.asarray(1 + np.exp(-z)))
        J = 1.0 / m * (np.log(h) * _y.T + np.log(1 - h) * (1 - _y).T)
        return J
    
    
    def gradient_descent(input_X, _y, theta, learning_rate=0.1,
                         iterate_times=3000):
        """
        gradient descent of logistic regression
        :param input_X: np.matrix input X
        :param _y: np.matrix y
        :param theta: np.matrix theta
        :param learning_rate: float learning rate
        :param iterate_times: int max iteration times
        :return: tuple
        """
        m = input_X.shape[0]
        Js = []
    
        for i in range(iterate_times):
            z = input_X * theta
            h = np.asmatrix(1 / np.asarray(1 + np.exp(-z)))
            errors = h - _y
            delta = 1.0 / m * (errors.T * input_X).T
            theta -= learning_rate * delta
            Js.append(cost_function(input_X, _y, theta))
    
        return theta, Js

    3. C++

    #include <iostream>
    #include <vector>
    #include <Eigen/Dense>
    
    using namespace std;
    using namespace Eigen;
    
    
    double cost_function(MatrixXd &input_X, MatrixXd &_y, MatrixXd &theta):
      double m = input_X.rows();
      ArrayXd _z = 0 - (input_X * theta).array();
      ArrayXd h = 1.0 / (1.0 + _z.exp());
      double J = h.log().matrix() * _y.transpose() + 
          (1 - h).log().matrix() * (1 - _y.array()).matrix().transpose();
      return J
    
    
    class GradientDescent{
      public:
        GradientDescent(MatrixXd &x, MatrixXd &y, MatrixXd &t, double r, 
                        int i): input_X(x), _y(y), theta(t), learning_rate(r),
                        iterate_times(i) {}
        MatrixXd theta;
        vector<double> Js;
        void run();
      private:
        MatrixXd input_X;
        MatrixXd _y;
        double learning_rate;
        int iterate_times;
    }
    
    void GradientDescent::run() {
      double rows = input_X.rows();
      for(int i=0; i<iterate_times; ++i) {
        ArrayXd _z = 0 - (input_X * theta).array();
        ArrayXd h = 1.0 / (1.0 + _z.exp());
        MatrixXd errors = h.matrix() - y;
        MatrixXd delta = 1.0 / rows * (errors.transpose() * input_X).transpose();
        theta -= learning_rate * delta;
        double J = cost_function(input_X, _y, theta);
        Js.push_back(J);
      }
    }
  • 相关阅读:
    深度学习优化方法比较
    调参
    Numpy/Pytorch之数据类型与强制转换
    numpy:维度问题
    js模板引擎-juicer
    js模板引擎-腾讯artTemplate 简洁语法例子
    canva绘制时钟
    js中的break ,continue, return
    JavaScript奇技淫巧44招
    数据类型
  • 原文地址:https://www.cnblogs.com/senjougahara/p/7658420.html
Copyright © 2011-2022 走看看