题目如下:
You have some coins. The
i
-th coin has a probabilityprob[i]
of facing heads when tossed.Return the probability that the number of coins facing heads equals
target
if you toss every coin exactly once.Example 1:
Input: prob = [0.4], target = 1 Output: 0.40000Example 2:
Input: prob = [0.5,0.5,0.5,0.5,0.5], target = 0 Output: 0.03125Constraints:
1 <= prob.length <= 1000
0 <= prob[i] <= 1
0 <= target
<= prob.length
- Answers will be accepted as correct if they are within
10^-5
of the correct answer.
解题思路:动态规划。首先假设dp[i][j]为投完第i枚硬币后有j枚硬币朝上的概率。如果第i-1枚硬币投完后有j枚朝上,那么第i枚硬币就只能朝下;如果i-1枚硬币投完后有j-1枚朝上,那么第i枚硬币就只能朝上。很容易建立状态转移方程,dp[i][j] = dp[i-1][j-1] * prob[i] + dp[i-1][j] * (1 - prob[i])。
代码如下:
class Solution(object): def probabilityOfHeads(self, prob, target): """ :type prob: List[float] :type target: int :rtype: float """ dp = [[0]*(len(prob) + 1) for _ in prob] dp[0][0] = 1 - prob[0] dp[0][1] = prob[0] for i in range(1,len(prob)): for j in range(min(target+1,len(prob))): if j == 0: dp[i][j] = float(dp[i-1][j]) * (1 - prob[i]) continue dp[i][j] = float(dp[i-1][j-1]) * prob[i] + float(dp[i-1][j]) * (1 - prob[i]) return dp[-1][target]