题目如下:
Given an array of integers
nums
and an integerk
. A subarray is called nice if there arek
odd numbers on it.Return the number of nice sub-arrays.
Example 1:
Input: nums = [1,1,2,1,1], k = 3 Output: 2 Explanation: The only sub-arrays with 3 odd numbers are [1,1,2,1] and [1,2,1,1].Example 2:
Input: nums = [2,4,6], k = 1 Output: 0 Explanation: There is no odd numbers in the array.Example 3:
Input: nums = [2,2,2,1,2,2,1,2,2,2], k = 2 Output: 16Constraints:
1 <= nums.length <= 50000
1 <= nums[i] <= 10^5
1 <= k <= nums.length
解题思路:创建一个val数组,val[i]表示从0~i区间内奇数的个数。如果要求i~j区间内奇数的个数,似乎只有val[j] - val[i]即可。但是还要再考虑一点,就是nums[i]的奇偶性。如果nums[i]是奇数,那么区间的奇数数量就是 val[j] - val[i] + 1;否则则为val[j] - val[i]。最后从头开始遍历val,对于每个val[i]来说,只要知道val[i] + k 或者val[i] + k - 1在val整个数组中出现的个数,即可求得nums以第i个元素为首的并且奇数个数为k的子数组的数量。
代码如下:
class Solution(object): def numberOfSubarrays(self, nums, k): """ :type nums: List[int] :type k: int :rtype: int """ count = 0 val = [0] * len(nums) dic = {} for i in range(len(nums)): if nums[i] % 2 == 1:count += 1 val[i] = count dic[count] = dic.setdefault(count,0) + 1 #print val res = 0 for i in range(len(nums)): if nums[i]%2 == 0: key = val[i] + k else: key = val[i] + k -1 if key in dic: res += dic[key] return res