题目如下:
A tree rooted at node 0 is given as follows:
- The number of nodes is
nodes
;- The value of the
i
-th node isvalue[i]
;- The parent of the
i
-th node isparent[i]
.Remove every subtree whose sum of values of nodes is zero.
After doing so, return the number of nodes remaining in the tree.
Example 1:
Input: nodes = 7, parent = [-1,0,0,1,2,2,2], value = [1,-2,4,0,-2,-1,-1] Output: 2Constraints:
1 <= nodes <= 10^4
-10^5 <= value[i] <= 10^5
parent.length == nodes
parent[0] == -1
which indicates that0
is the root.
解题思路:我的方法是递归+动态规划。对于任意一个节点i,记dp[i]为其子树的和,如果j,k....n为其子节点,那么有dp[i] = dp[j] + dp[k] + .... + dp[n] + value[i]。通过递归的方式很容易可以求出每个节点的子树和,相应的可以求出哪些节点的子树和为0。再遍历这些子树的所有节点,并标记为删除的状态,最后统计出状态为删除的节点即可。
代码如下:
class Solution(object): def deleteTreeNodes(self, nodes, parent, value): """ :type nodes: int :type parent: List[int] :type value: List[int] :rtype: int """ import sys sys.setrecursionlimit(1000000) dic = {} for i in range(len(parent)): dic[parent[i]] = dic.setdefault(parent[i],[]) + [i] dp = [None] * nodes def getValue(inx): if inx not in dic: dp[inx] = value[inx] return value[inx] elif dp[inx] != None: return dp[inx] count = 0 for child in dic[inx]: count += getValue(child) count += value[inx] dp[inx] = count return count dic_remove = {} for i in range(nodes): if dp[i] == None: dp[i] = getValue(i) if dp[i] == 0: dic_remove[i] = 1 delete = [0] * nodes def markDelete(inx): delete[inx] = 1 if inx not in dic: return for key in dic[inx]: markDelete(key) for inx in dic_remove.iterkeys(): markDelete(inx) res = sum(delete) return nodes - res