题目如下:
Given an integer
n
. No-Zero integer is a positive integer which doesn't contain any 0 in its decimal representation.Return a list of two integers
[A, B]
where:
A
andB
are No-Zero integers.A + B = n
It's guarateed that there is at least one valid solution. If there are many valid solutions you can return any of them.
Example 1:
Input: n = 2 Output: [1,1] Explanation: A = 1, B = 1. A + B = n and both A and B don't contain any 0 in their decimal representation.Example 2:
Input: n = 11 Output: [2,9]Example 3:
Input: n = 10000 Output: [1,9999]Example 4:
Input: n = 69 Output: [1,68]Example 5:
Input: n = 1010 Output: [11,999]Constraints:
2 <= n <= 10^4
解题思路:从n的个位开始,依次对每一位进行拆分。拆分的原则也很简单,如果某一位的值是x,那就拆成1和x-1。特别要注意借位,如果某一位的值是0或1,都需要向后一位借位。
代码如下:
class Solution(object): def getNoZeroIntegers(self, n): """ :type n: int :rtype: List[int] """ num1 = '' num2 = '' nl = map(int, str(n)) for i in range(len(nl)-1,-1,-1): if nl[i] > 1: num1 = '1' + num1 num2 = str(nl[i] - 1) + num2 elif nl[i] == 1 and i != 0: num1 = '2' + num1 num2 = '9' + num2 nl[i - 1] -= 1 elif nl[i] == 1 and i == 0: num1 = '1' + num1 elif nl[i] == 0 and i > 0: num1 = '1' + num1 num2 = '9' + num2 nl[i-1] -= 1 elif nl[i] == -1: num1 = '1' + num1 num2 = '8' + num2 nl[i - 1] -= 1 return [int(num1),int(num2)]