zoukankan      html  css  js  c++  java
  • 【leetcode】1377. Frog Position After T Seconds

    题目如下:

    Given an undirected tree consisting of n vertices numbered from 1 to n. A frog starts jumping from the vertex 1. In one second, the frog jumps from its current vertex to another unvisited vertex if they are directly connected. The frog can not jump back to a visited vertex. In case the frog can jump to several vertices it jumps randomly to one of them with the same probability, otherwise, when the frog can not jump to any unvisited vertex it jumps forever on the same vertex. 

    The edges of the undirected tree are given in the array edges, where edges[i] = [fromi, toi] means that exists an edge connecting directly the vertices fromi and toi.

    Return the probability that after t seconds the frog is on the vertex target.

    Example 1:

    Input: n = 7, edges = [[1,2],[1,3],[1,7],[2,4],[2,6],[3,5]], t = 2, target = 4
    Output: 0.16666666666666666 
    Explanation: The figure above shows the given graph. The frog starts at vertex 1, jumping with 1/3 probability to the vertex 2 after second 1 and then jumping with 1/2 probability to vertex 4 after second 2. Thus the probability for the frog is on the vertex 4 after 2 seconds is 1/3 * 1/2 = 1/6 = 0.16666666666666666. 
    

    Example 2:

    Input: n = 7, edges = [[1,2],[1,3],[1,7],[2,4],[2,6],[3,5]], t = 1, target = 7
    Output: 0.3333333333333333
    Explanation: The figure above shows the given graph. The frog starts at vertex 1, jumping with 1/3 = 0.3333333333333333 probability to the vertex 7 after second 1. 
    

    Example 3:

    Input: n = 7, edges = [[1,2],[1,3],[1,7],[2,4],[2,6],[3,5]], t = 20, target = 6
    Output: 0.16666666666666666

    Constraints:

    • 1 <= n <= 100
    • edges.length == n-1
    • edges[i].length == 2
    • 1 <= edges[i][0], edges[i][1] <= n
    • 1 <= t <= 50
    • 1 <= target <= n
    • Answers within 10^-5 of the actual value will be accepted as correct.

    解题思路:本题我用的是动态规划的方法、记dp[i][j]为j秒后青蛙位于第i个节点的概率。根据父子节点之间序号的关系,很容易了利用BFS方法将整个dp数组计算出来。但是有一点需要注意,如果节点i是叶子节点,并且能在第j秒到达,那么dp[i][t] = dp[i][j]。

    代码如下:

    class Solution(object):
        def frogPosition(self, n, edges, t, target):
            """
            :type n: int
            :type edges: List[List[int]]
            :type t: int
            :type target: int
            :rtype: float
            """
            dic = {}
    
            queue = [1]
            visit = [0] * len(edges)
            while len(queue) > 0:
                node = queue.pop(0)
                for i in range(len(edges)):
                    if visit[i] == 1:
                        continue
                    e1,e2 = edges[i][0],edges[i][1]
                    if e1 == node:
                        dic[e1] = dic.setdefault(e1,[]) + [e2]
                        queue.append(e2)
                        visit[i] = 1
                    elif e2 == node:
                        dic[e2] = dic.setdefault(e2, []) + [e1]
                        queue.append(e1)
                        visit[i] = 1
    
            #print dic
    
            dp = [[0] * (t+2) for _ in range(n+1)]
            dp[1][0] = 1
            queue = [(1,0)]
    
            while len(queue) > 0:
                node,time = queue.pop(0)
                if time > t:
                    continue
                if node == 3 and time == 2:
                    pass
                if node not in dic:
                    continue
                for child in dic[node]:
                    dp[child][time+1] = float(dp[node][time])/float(len(dic[node]))
                    queue.append((child,time+1))
    
            res = dp[target][t]
            if dp[target][t] == 0 and target not in dic:
                for i in range(t,-1,-1):
                    if dp[target][i] != 0:
                        res = dp[target][i]
                        break
            #print dp
            return res
  • 相关阅读:
    [转载]详解网络传输中的三张表,MAC地址表、ARP缓存表以及路由表
    网络诊断小结
    Java代理模式示例程序
    [转载]Java中继承、装饰者模式和代理模式的区别
    [转载]JDK、SDK、J2EE、J2SE、J2ME的区别
    Java Web-JSTL
    [转载]Linux 命令详解:./configure、make、make install 命令
    jmeter之beanshell断言实例
    Appium左右、上下滑动(Java)
    【Maven】如何使用pom.xml引入自定义jar包
  • 原文地址:https://www.cnblogs.com/seyjs/p/12542673.html
Copyright © 2011-2022 走看看