zoukankan      html  css  js  c++  java
  • 【leetcode】1514. Path with Maximum Probability

    题目如下:

    You are given an undirected weighted graph of n nodes (0-indexed), represented by an edge list where edges[i] = [a, b] is an undirected edge connecting the nodes a and b with a probability of success of traversing that edge succProb[i].

    Given two nodes start and end, find the path with the maximum probability of success to go from start to end and return its success probability.

    If there is no path from start to end, return 0. Your answer will be accepted if it differs from the correct answer by at most 1e-5. 

    Example 1:

    Input: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.2], start = 0, end = 2
    Output: 0.25000
    Explanation: There are two paths from start to end, one having a probability of success = 0.2 and the other has 0.5 * 0.5 = 0.25.
    

    Example 2:

    Input: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.3], start = 0, end = 2
    Output: 0.30000
    

    Example 3:

    Input: n = 3, edges = [[0,1]], succProb = [0.5], start = 0, end = 2
    Output: 0.00000
    Explanation: There is no path between 0 and 2. 

    Constraints:

    • 2 <= n <= 10^4
    • 0 <= start, end < n
    • start != end
    • 0 <= a, b < n
    • a != b
    • 0 <= succProb.length == edges.length <= 2*10^4
    • 0 <= succProb[i] <= 1
    • There is at most one edge between every two nodes.

    解题思路:采用BFS的方法,从start开始,依次可以把能到达的节点加入队列中,加入队列之前需要判断通过当前路径到达节点的几率是否比之前其他路径的几率大,只有大于的情况,才能把节点加入队列。

    代码如下:

    class Solution(object):
        def maxProbability(self, n, edges, succProb, start, end):
            """
            :type n: int
            :type edges: List[List[int]]
            :type succProb: List[float]
            :type start: int
            :type end: int
            :rtype: float
            """
            dic = {}
            dic_succ = {}
            for i in range(len(edges)):
                e1, e2 = edges[i]
                dic_succ[(e1,e2)] = succProb[i]
                dic[e1] = dic.setdefault(e1,[]) + [e2]
                dic[e2] = dic.setdefault(e2,[]) + [e1]
    
            max_prob = [0.0] * n
            max_prob[start] = 1
            queue = [start]
            while len(queue) > 0:
                node = queue.pop(0)
                prob = max_prob[node]
                if node not in dic:continue
                elif node == end:
                    continue
                for next_node in dic[node]:
                    edge_prob = dic_succ[(node,next_node)] if (node,next_node) in dic_succ else dic_succ[(next_node,node)]
                    if prob * edge_prob > max_prob[next_node]:
                        max_prob[next_node] = prob * edge_prob
                        queue.append(next_node)
            return max_prob[end]
  • 相关阅读:
    D3.js比例尺 定量比例尺 之 线性比例尺(v3版本)
    D3.js的基础部分之数组的处理 集合(Set)(v3版本)
    D3.js的基础部分之数组的处理 映射(Map)(v3版本)
    D3.js (v3)+react框架 基础部分之认识选择集和如何绘制一个矢量图
    D3.js的一些基础部分 (v3版本)
    Flask 教程 第九章:分页
    Flask 教程 第八章:粉丝
    Flask 教程 第七章:错误处理
    Flask 教程 第六章:个人主页和头像
    Flask 教程 第五章:用户登录
  • 原文地址:https://www.cnblogs.com/seyjs/p/13666687.html
Copyright © 2011-2022 走看看