zoukankan      html  css  js  c++  java
  • 【leetcode】1514. Path with Maximum Probability

    题目如下:

    You are given an undirected weighted graph of n nodes (0-indexed), represented by an edge list where edges[i] = [a, b] is an undirected edge connecting the nodes a and b with a probability of success of traversing that edge succProb[i].

    Given two nodes start and end, find the path with the maximum probability of success to go from start to end and return its success probability.

    If there is no path from start to end, return 0. Your answer will be accepted if it differs from the correct answer by at most 1e-5. 

    Example 1:

    Input: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.2], start = 0, end = 2
    Output: 0.25000
    Explanation: There are two paths from start to end, one having a probability of success = 0.2 and the other has 0.5 * 0.5 = 0.25.
    

    Example 2:

    Input: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.3], start = 0, end = 2
    Output: 0.30000
    

    Example 3:

    Input: n = 3, edges = [[0,1]], succProb = [0.5], start = 0, end = 2
    Output: 0.00000
    Explanation: There is no path between 0 and 2. 

    Constraints:

    • 2 <= n <= 10^4
    • 0 <= start, end < n
    • start != end
    • 0 <= a, b < n
    • a != b
    • 0 <= succProb.length == edges.length <= 2*10^4
    • 0 <= succProb[i] <= 1
    • There is at most one edge between every two nodes.

    解题思路:采用BFS的方法,从start开始,依次可以把能到达的节点加入队列中,加入队列之前需要判断通过当前路径到达节点的几率是否比之前其他路径的几率大,只有大于的情况,才能把节点加入队列。

    代码如下:

    class Solution(object):
        def maxProbability(self, n, edges, succProb, start, end):
            """
            :type n: int
            :type edges: List[List[int]]
            :type succProb: List[float]
            :type start: int
            :type end: int
            :rtype: float
            """
            dic = {}
            dic_succ = {}
            for i in range(len(edges)):
                e1, e2 = edges[i]
                dic_succ[(e1,e2)] = succProb[i]
                dic[e1] = dic.setdefault(e1,[]) + [e2]
                dic[e2] = dic.setdefault(e2,[]) + [e1]
    
            max_prob = [0.0] * n
            max_prob[start] = 1
            queue = [start]
            while len(queue) > 0:
                node = queue.pop(0)
                prob = max_prob[node]
                if node not in dic:continue
                elif node == end:
                    continue
                for next_node in dic[node]:
                    edge_prob = dic_succ[(node,next_node)] if (node,next_node) in dic_succ else dic_succ[(next_node,node)]
                    if prob * edge_prob > max_prob[next_node]:
                        max_prob[next_node] = prob * edge_prob
                        queue.append(next_node)
            return max_prob[end]
  • 相关阅读:
    Qt 学习之路 2(39):遍历容器
    Qt 学习之路 2(38):存储容器
    JS 格式化日期
    springboot 核心注解
    Java 生成随机数 Random、SecurityRandom、ThreadLocalRandom、Math.random()
    验证码 easy_captcha
    读过的书籍
    typora 常用快捷键
    kafka 遇到的问题
    老男孩Linux 运维
  • 原文地址:https://www.cnblogs.com/seyjs/p/13666687.html
Copyright © 2011-2022 走看看