zoukankan      html  css  js  c++  java
  • 【leetcode】1514. Path with Maximum Probability

    题目如下:

    You are given an undirected weighted graph of n nodes (0-indexed), represented by an edge list where edges[i] = [a, b] is an undirected edge connecting the nodes a and b with a probability of success of traversing that edge succProb[i].

    Given two nodes start and end, find the path with the maximum probability of success to go from start to end and return its success probability.

    If there is no path from start to end, return 0. Your answer will be accepted if it differs from the correct answer by at most 1e-5. 

    Example 1:

    Input: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.2], start = 0, end = 2
    Output: 0.25000
    Explanation: There are two paths from start to end, one having a probability of success = 0.2 and the other has 0.5 * 0.5 = 0.25.
    

    Example 2:

    Input: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.3], start = 0, end = 2
    Output: 0.30000
    

    Example 3:

    Input: n = 3, edges = [[0,1]], succProb = [0.5], start = 0, end = 2
    Output: 0.00000
    Explanation: There is no path between 0 and 2. 

    Constraints:

    • 2 <= n <= 10^4
    • 0 <= start, end < n
    • start != end
    • 0 <= a, b < n
    • a != b
    • 0 <= succProb.length == edges.length <= 2*10^4
    • 0 <= succProb[i] <= 1
    • There is at most one edge between every two nodes.

    解题思路:采用BFS的方法,从start开始,依次可以把能到达的节点加入队列中,加入队列之前需要判断通过当前路径到达节点的几率是否比之前其他路径的几率大,只有大于的情况,才能把节点加入队列。

    代码如下:

    class Solution(object):
        def maxProbability(self, n, edges, succProb, start, end):
            """
            :type n: int
            :type edges: List[List[int]]
            :type succProb: List[float]
            :type start: int
            :type end: int
            :rtype: float
            """
            dic = {}
            dic_succ = {}
            for i in range(len(edges)):
                e1, e2 = edges[i]
                dic_succ[(e1,e2)] = succProb[i]
                dic[e1] = dic.setdefault(e1,[]) + [e2]
                dic[e2] = dic.setdefault(e2,[]) + [e1]
    
            max_prob = [0.0] * n
            max_prob[start] = 1
            queue = [start]
            while len(queue) > 0:
                node = queue.pop(0)
                prob = max_prob[node]
                if node not in dic:continue
                elif node == end:
                    continue
                for next_node in dic[node]:
                    edge_prob = dic_succ[(node,next_node)] if (node,next_node) in dic_succ else dic_succ[(next_node,node)]
                    if prob * edge_prob > max_prob[next_node]:
                        max_prob[next_node] = prob * edge_prob
                        queue.append(next_node)
            return max_prob[end]
  • 相关阅读:
    配置apache的文件访问路径
    php 常量const
    php接口interface的使用
    php 抽象类abstract
    php 面向对象三大特点:封装、继承、多态
    程序员的情怀《从前慢》木心
    php static静态属性和静态方法
    php面向对象的构造方法与析构方法
    关于php变量的赋值和引用的区别
    angular4.0微信oAuth第三方认证的正确方式
  • 原文地址:https://www.cnblogs.com/seyjs/p/13666687.html
Copyright © 2011-2022 走看看