题目如下:
Given an integer array
A
, and an integertarget
, return the number of tuplesi, j, k
such thati < j < k
andA[i] + A[j] + A[k] == target
.As the answer can be very large, return it modulo
10^9 + 7
.Example 1:
Input: A = [1,1,2,2,3,3,4,4,5,5], target = 8 Output: 20 Explanation: Enumerating by the values (A[i], A[j], A[k]): (1, 2, 5) occurs 8 times; (1, 3, 4) occurs 8 times; (2, 2, 4) occurs 2 times; (2, 3, 3) occurs 2 times.
Example 2:
Input: A = [1,1,2,2,2,2], target = 5 Output: 12 Explanation: A[i] = 1, A[j] = A[k] = 2 occurs 12 times: We choose one 1 from [1,1] in 2 ways, and two 2s from [2,2,2,2] in 6 ways.
Note:
3 <= A.length <= 3000
0 <= A[i] <= 100
0 <= target <= 300
解题思路:虽然A.length 最大值是300,但是A[i]的值在0~100之间,说明A中有很多重复值,对A去重后length最大值也就100,所以O(n^3)的复杂度完全可以接受。首先对A去重,假设A[i] * A[j] * A[k] == target (i<=j<=k),那么 A[i] 、A[j]、A[k] 三者之间的值有这么几种情况:
a.三者相等: 这种情况,一共存在C(A[i]在A中的个数,3)种组合 (A[i]在A中的个数 >= 3, 这个表达的是A[i]在去重前的A出现的次数)
b.任意两者相等:假设A[i] == A[j] != A[k] ,那么一共存在 C(A[i]在A中的个数,2) * A[k]在A中出现的次数 (A[i]在A中的个数,2) >= 2)
c.三者完全不同:这个最简单,一共存在 A[i]在A中出现的次数 * A[j]在A中出现的次数 * A[k]在A中出现的次数
代码如下:
class Solution(object): def threeSumMulti(self, A, target): """ :type A: List[int] :type target: int :rtype: int """ def combination(n,m): v1 = 1 times = 0 while times < m: v1 *= n n -= 1 times += 1 v2 = 1 while m > 0: v2 *= m m -= 1 return v1 / v2 dic = {} for i in A: dic[i] = dic.setdefault(i, 0) + 1 ul = list(set(A)) res = 0 for i in range(len(ul)): for j in range(i,len(ul)): for k in range(j,len(ul)): if (ul[i] + ul[j] + ul[k]) != target: continue elif ul[i] == ul[j] == ul[k]: if dic[ul[i]] >= 3: res += combination(dic[ul[i]],3) elif ul[i] == ul[j]: if dic[ul[i]] >= 2: res += (combination(dic[ul[i]],2) * dic[ul[k]]) elif ul[i] == ul[k]: if dic[ul[i]] >= 2: res += (combination(dic[ul[i]], 2) * dic[ul[j]]) elif ul[j] == ul[k]: if dic[ul[j]] >= 2: res += (combination(dic[ul[j]], 2) * dic[ul[i]]) else: res += (dic[ul[i]] * dic[ul[j]] * dic[ul[k]]) return res % (pow(10,9) + 7)