zoukankan      html  css  js  c++  java
  • optim.py cs231n

    n如果有错误,欢迎指出,不胜感激

    import numpy as np
    
    """
    This file implements various first-order update rules that are commonly used for
    training neural networks. Each update rule accepts current weights and the
    gradient of the loss with respect to those weights and produces the next set of
    weights. Each update rule has the same interface:
    
    def update(w, dw, config=None):
    
    Inputs:
      - w: A numpy array giving the current weights.
      - dw: A numpy array of the same shape as w giving the gradient of the
        loss with respect to w.
      - config: A dictionary containing hyperparameter values such as learning rate,
        momentum, etc. If the update rule requires caching values over many
        iterations, then config will also hold these cached values.
    
    Returns:
      - next_w: The next point after the update.
      - config: The config dictionary to be passed to the next iteration of the
        update rule.
    
    NOTE: For most update rules, the default learning rate will probably not perform
    well; however the default values of the other hyperparameters should work well
    for a variety of different problems.
    
    For efficiency, update rules may perform in-place updates, mutating w and
    setting next_w equal to w.
    """
    
    
    def sgd(w, dw, config=None):
      """
      Performs vanilla stochastic gradient descent.
    
      config format:
      - learning_rate: Scalar learning rate.
      """
      if config is None: config = {}
      config.setdefault('learning_rate', 1e-2)
    w -= config['learning_rate'] * dw return w, config def sgd_momentum(w, dw, config=None): """ Performs stochastic gradient descent with momentum. config format: - learning_rate: Scalar learning rate. - momentum: Scalar between 0 and 1 giving the momentum value. Setting momentum = 0 reduces to sgd. - velocity: A numpy array of the same shape as w and dw used to store a moving average of the gradients. """ if config is None: config = {} config.setdefault('learning_rate', 1e-2) config.setdefault('momentum', 0.9) v = config.get('velocity', np.zeros_like(w)) next_w = None v=v*config['momentum']-config['learning_rate']*dw next_w=w+v config['velocity'] = v return next_w, config def rmsprop(x, dx, config=None): """ Uses the RMSProp update rule, which uses a moving average of squared gradient values to set adaptive per-parameter learning rates. config format: - learning_rate: Scalar learning rate. - decay_rate: Scalar between 0 and 1 giving the decay rate for the squared gradient cache. - epsilon: Small scalar used for smoothing to avoid dividing by zero. - cache: Moving average of second moments of gradients. """ if config is None: config = {} config.setdefault('learning_rate', 1e-2) config.setdefault('decay_rate', 0.99) config.setdefault('epsilon', 1e-8) config.setdefault('cache', np.zeros_like(x)) next_x = None cache=config['cache']*config['decay_rate']+(1-config['decay_rate'])*dx**2
    next_x=x-config['learning_rate']*dx/np.sqrt(cache+config['epsilon'])
    config['cache']=cache return next_x, config def adam(x, dx, config=None): """ Uses the Adam update rule, which incorporates moving averages of both the gradient and its square and a bias correction term. config format: - learning_rate: Scalar learning rate. - beta1: Decay rate for moving average of first moment of gradient. - beta2: Decay rate for moving average of second moment of gradient. - epsilon: Small scalar used for smoothing to avoid dividing by zero. - m: Moving average of gradient. - v: Moving average of squared gradient. - t: Iteration number. """ if config is None: config = {} config.setdefault('learning_rate', 1e-3) config.setdefault('beta1', 0.9) config.setdefault('beta2', 0.999) config.setdefault('epsilon', 1e-8) config.setdefault('m', np.zeros_like(x)) config.setdefault('v', np.zeros_like(x)) config.setdefault('t', 0) config['t']+=1 这个方法比较综合,各种方法的好处吧 m=config['beta1']*config['m']+(1-config['beta1'])*dx # now to change by acc v=config['beta2']*config['v']+(1-config['beta2'])*dx**2 config['m']=m config['v']=v m=m/(1-config['beta1']**config['t']) v=v/(1-config['beta2']**config['t']) next_x=x-config['learning_rate']*m/np.sqrt(v+config['epsilon']) return next_x, config

      

    n

  • 相关阅读:
    TP5 查询mysql数据库时的find_in_set用法
    使用paginate方法分页无法判断获取的数据是否为空
    苹果电脑Mac系统如何安装Adobe Flash Player
    JavaScript Timing 事件及两种时钟写法
    JavaScript 弹出框
    JavaScript 表单验证
    fastadmin CMS等系列插件安装不成功的问题
    fastadmin中js是如何调用的
    fastadmin安装定时插件报错 ZipArchive::extractTo(): Permission denied
    今天科普一下 苹果开发者账号中:个人、公司、企业账号的区别
  • 原文地址:https://www.cnblogs.com/sfzyk/p/6731090.html
Copyright © 2011-2022 走看看