zoukankan      html  css  js  c++  java
  • optim.py cs231n

    n如果有错误,欢迎指出,不胜感激

    import numpy as np
    
    """
    This file implements various first-order update rules that are commonly used for
    training neural networks. Each update rule accepts current weights and the
    gradient of the loss with respect to those weights and produces the next set of
    weights. Each update rule has the same interface:
    
    def update(w, dw, config=None):
    
    Inputs:
      - w: A numpy array giving the current weights.
      - dw: A numpy array of the same shape as w giving the gradient of the
        loss with respect to w.
      - config: A dictionary containing hyperparameter values such as learning rate,
        momentum, etc. If the update rule requires caching values over many
        iterations, then config will also hold these cached values.
    
    Returns:
      - next_w: The next point after the update.
      - config: The config dictionary to be passed to the next iteration of the
        update rule.
    
    NOTE: For most update rules, the default learning rate will probably not perform
    well; however the default values of the other hyperparameters should work well
    for a variety of different problems.
    
    For efficiency, update rules may perform in-place updates, mutating w and
    setting next_w equal to w.
    """
    
    
    def sgd(w, dw, config=None):
      """
      Performs vanilla stochastic gradient descent.
    
      config format:
      - learning_rate: Scalar learning rate.
      """
      if config is None: config = {}
      config.setdefault('learning_rate', 1e-2)
    w -= config['learning_rate'] * dw return w, config def sgd_momentum(w, dw, config=None): """ Performs stochastic gradient descent with momentum. config format: - learning_rate: Scalar learning rate. - momentum: Scalar between 0 and 1 giving the momentum value. Setting momentum = 0 reduces to sgd. - velocity: A numpy array of the same shape as w and dw used to store a moving average of the gradients. """ if config is None: config = {} config.setdefault('learning_rate', 1e-2) config.setdefault('momentum', 0.9) v = config.get('velocity', np.zeros_like(w)) next_w = None v=v*config['momentum']-config['learning_rate']*dw next_w=w+v config['velocity'] = v return next_w, config def rmsprop(x, dx, config=None): """ Uses the RMSProp update rule, which uses a moving average of squared gradient values to set adaptive per-parameter learning rates. config format: - learning_rate: Scalar learning rate. - decay_rate: Scalar between 0 and 1 giving the decay rate for the squared gradient cache. - epsilon: Small scalar used for smoothing to avoid dividing by zero. - cache: Moving average of second moments of gradients. """ if config is None: config = {} config.setdefault('learning_rate', 1e-2) config.setdefault('decay_rate', 0.99) config.setdefault('epsilon', 1e-8) config.setdefault('cache', np.zeros_like(x)) next_x = None cache=config['cache']*config['decay_rate']+(1-config['decay_rate'])*dx**2
    next_x=x-config['learning_rate']*dx/np.sqrt(cache+config['epsilon'])
    config['cache']=cache return next_x, config def adam(x, dx, config=None): """ Uses the Adam update rule, which incorporates moving averages of both the gradient and its square and a bias correction term. config format: - learning_rate: Scalar learning rate. - beta1: Decay rate for moving average of first moment of gradient. - beta2: Decay rate for moving average of second moment of gradient. - epsilon: Small scalar used for smoothing to avoid dividing by zero. - m: Moving average of gradient. - v: Moving average of squared gradient. - t: Iteration number. """ if config is None: config = {} config.setdefault('learning_rate', 1e-3) config.setdefault('beta1', 0.9) config.setdefault('beta2', 0.999) config.setdefault('epsilon', 1e-8) config.setdefault('m', np.zeros_like(x)) config.setdefault('v', np.zeros_like(x)) config.setdefault('t', 0) config['t']+=1 这个方法比较综合,各种方法的好处吧 m=config['beta1']*config['m']+(1-config['beta1'])*dx # now to change by acc v=config['beta2']*config['v']+(1-config['beta2'])*dx**2 config['m']=m config['v']=v m=m/(1-config['beta1']**config['t']) v=v/(1-config['beta2']**config['t']) next_x=x-config['learning_rate']*m/np.sqrt(v+config['epsilon']) return next_x, config

      

    n

  • 相关阅读:
    LINQ操作符一:Select
    DataGridView使用技巧十二:DataGridView Error图标表示的设定
    DataGridView使用技巧十一:DataGridView用户输入时,单元格输入值的设定
    DataGridView使用技巧十:单元格表示值的自定义
    DataGridView使用技巧九:DataGridView的右键菜单(ContextMenuStrip)
    清除DataGridView显示的数据
    SQL Server查询某个字段存在哪些表中
    DataGridView使用技巧八:设置单元格的ToolTip
    DataGridView使用技巧七:列顺序的调整、操作行头列头的标题
    csvkit---python一个牛逼到不行的csv处理库
  • 原文地址:https://www.cnblogs.com/sfzyk/p/6731090.html
Copyright © 2011-2022 走看看