n如果有错误,欢迎指出,不胜感激
import numpy as np
from cs231n.layers import *
from cs231n.layer_utils import *
class TwoLayerNet(object):
"""
A two-layer fully-connected neural network with ReLU nonlinearity and
softmax loss that uses a modular layer design. We assume an input dimension
of D, a hidden dimension of H, and perform classification over C classes.
The architecure should be affine - relu - affine - softmax.
Note that this class does not implement gradient descent; instead, it
will interact with a separate Solver object that is responsible for running
optimization.
The learnable parameters of the model are stored in the dictionary
self.params that maps parameter names to numpy arrays.
"""
def __init__(self, input_dim=3*32*32, hidden_dim=100, num_classes=10,
weight_scale=1e-3, reg=0.0):
"""
Initialize a new network.
Inputs:
- input_dim: An integer giving the size of the input
- hidden_dim: An integer giving the size of the hidden layer
- num_classes: An integer giving the number of classes to classify
- dropout: Scalar between 0 and 1 giving dropout strength.
- weight_scale: Scalar giving the standard deviation for random
initialization of the weights.
- reg: Scalar giving L2 regularization strength.
"""
self.params = {}
self.reg = reg
self.params['W1']=np.random.randn(input_dim,hidden_dim)*weight_scale
self.params['b1']=np.zeros((hidden_dim,))
self.params['W2']=np.random.randn(hidden_dim,num_classes)*weight_scale
self.params['b2']=np.zeros((num_classes,))
def loss(self, X, y=None):
"""
Compute loss and gradient for a minibatch of data.
Inputs:
- X: Array of input data of shape (N, d_1, ..., d_k)
- y: Array of labels, of shape (N,). y[i] gives the label for X[i].
Returns:
If y is None, then run a test-time forward pass of the model and return:
- scores: Array of shape (N, C) giving classification scores, where
scores[i, c] is the classification score for X[i] and class c.
If y is not None, then run a training-time forward and backward pass and
return a tuple of:
- loss: Scalar value giving the loss
- grads: Dictionary with the same keys as self.params, mapping parameter
names to gradients of the loss with respect to those parameters.
"""
scores = None
out1,cache1=affine_relu_forward(X,self.params['W1'],self.params['b1'])
out2,cache2=affine_forward(out1,self.params['W2'],self.params['b2'])
if y is None :
return out2
loss,dx=softmax_loss(out2,y)
loss+=0.5*self.reg*( np.sum(self.params['W2']*self.params['W2'])+np.sum(self.params['W1']*self.params['W1']) )
grads={}
dout1,grads['W2'],grads['b2']=affine_backward(dx,cache2)
true_dx,grads['W1'],grads['b1']=affine_relu_backward(dout1,cache1)
grads['W2']+=self.params['W2']*self.reg
grads['W1']+=self.params['W1']*self.reg
#grads['b2']+=self.params['b2']*self.reg
#grads['b1']+=self.params['b1']*self.reg
# If y is None then we are in test mode so just return scores
# if y is None:
# return scores
# loss, grads = 0, {}
return loss, grads
class FullyConnectedNet(object):
"""
A fully-connected neural network with an arbitrary number of hidden layers,
ReLU nonlinearities, and a softmax loss function. This will also implement
dropout and batch normalization as options. For a network with L layers,
the architecture will be
{affine - [batch norm] - relu - [dropout]} x (L - 1) - affine - softmax
where batch normalization and dropout are optional, and the {...} block is
repeated L - 1 times.
Similar to the TwoLayerNet above, learnable parameters are stored in the
self.params dictionary and will be learned using the Solver class.
"""
def __init__(self, hidden_dims=[100], input_dim=3*32*32, num_classes=10,
dropout=0, use_batchnorm=False, reg=0.0,
weight_scale=1e-2, dtype=np.float32, seed=None):
"""
Initialize a new FullyConnectedNet.
Inputs:
- hidden_dims: A list of integers giving the size of each hidden layer.
- input_dim: An integer giving the size of the input.
- num_classes: An integer giving the number of classes to classify.
- dropout: Scalar between 0 and 1 giving dropout strength. If dropout=0 then
the network should not use dropout at all.
- use_batchnorm: Whether or not the network should use batch normalization.
- reg: Scalar giving L2 regularization strength.
- weight_scale: Scalar giving the standard deviation for random
initialization of the weights.
- dtype: A numpy datatype object; all computations will be performed using
this datatype. float32 is faster but less accurate, so you should use
float64 for numeric gradient checking.
- seed: If not None, then pass this random seed to the dropout layers. This
will make the dropout layers deteriminstic so we can gradient check the
model.
"""
self.use_batchnorm = use_batchnorm
self.use_dropout = dropout > 0
self.reg = reg
self.num_layers = 1 + len(hidden_dims)
self.dtype = dtype
self.params = {}
self.num_layers=len(hidden_dims)
num_layers=self.num_layers
last_dims=input_dim
for i in xrange(num_layers):
self.params['W%d'%(i+1)]=np.random.randn(last_dims,hidden_dims[i])*weight_scale
self.params['b%d'%(i+1)]=np.zeros(hidden_dims[i],)
if self.use_batchnorm:
self.params['beta%d'%(i+1)]=np.zeros(hidden_dims[i],)
self.params['gamma%d'%(i+1)]=np.ones(hidden_dims[i],)
last_dims=hidden_dims[i]
self.params['W%d'%(num_layers+1)]=np.random.randn(last_dims,num_classes)*weight_scale
self.params['b%d'%(num_layers+1)]=np.zeros(num_classes,)
# When using dropout we need to pass a dropout_param dictionary to each
# dropout layer so that the layer knows the dropout probability and the mode
# (train / test). You can pass the same dropout_param to each dropout layer.
self.dropout_param = {}
if self.use_dropout:
self.dropout_param = {'mode': 'train', 'p': dropout}
if seed is not None:
self.dropout_param['seed'] = seed
# With batch normalization we need to keep track of running means and
# variances, so we need to pass a special bn_param object to each batch
# normalization layer. You should pass self.bn_params[0] to the forward pass
# of the first batch normalization layer, self.bn_params[1] to the forward
# pass of the second batch normalization layer, etc.
self.bn_params = []
if self.use_batchnorm:
self.bn_params = [{'mode': 'train'} for i in xrange(self.num_layers)]
#print len(self.bn_params)
# Cast all parameters to the correct datatype
for k, v in self.params.iteritems():
self.params[k] = v.astype(dtype)
def loss(self, X, y=None):
"""
Compute loss and gradient for the fully-connected net.
Input / output: Same as TwoLayerNet above.
"""
X = X.astype(self.dtype)
mode = 'test' if y is None else 'train'
# Set train/test mode for batchnorm params and dropout param since they
# behave differently during training and testing.
if self.dropout_param is not None:
self.dropout_param['mode'] = mode
if self.use_batchnorm:
for bn_param in self.bn_params:
bn_param[mode] = mode
scores = None
cache={}
num_layers=self.num_layers
next=X
for i in xrange(num_layers):
next,cache['cache%d'%(i+1)]=affine_forward(next,self.params['W%d'%(i+1)],self.params['b%d'%(i+1)])
if self.use_batchnorm:
next,cache['cachebn%d'%(i+1)]=batchnorm_forward(next,self.params['gamma%d'%(i+1)],self.params['beta%d'%(i+1)],self.bn_params[i])
next,cache['cacher%d'%(i+1)]=relu_forward(next)
if self.use_dropout:
next,cache['cached%d'%(i+1)]=dropout_forward(next,self.dropout_param)
scores,cache['cache%d'%(num_layers+1)]=affine_forward(next,self.params['W%d'%(num_layers+1)],self.params['b%d'%(num_layers+1)])
# If test mode return early
if mode == 'test':
return scores
loss, grads = 0.0, {}
loss,dscores=softmax_loss(scores,y)
for i in xrange(num_layers+1):
loss+=np.sum(self.params['W%d'%(i+1)]**2)*0.5*self.reg
dout=dscores
dout,grads['W%d'%(num_layers+1)],grads['b%d'%(num_layers+1)]=affine_backward(dout,cache['cache%d'%(num_layers+1)])
grads['W%d'%(num_layers+1)]+=self.params['W%d'%(num_layers+1)]*self.reg
for i in xrange(num_layers):
i=num_layers-i
if self.use_dropout:
dout=dropout_backward(dout,cache['cached%d'%i])
dout=relu_backward(dout,cache['cacher%d'%i])
if self.use_batchnorm:
#print i
dout,grads['gamma%d'%i],grads['beta%d'%i]=batchnorm_backward_alt(dout,cache['cachebn%d'%i])
dout,grads['W%d'%i],grads['b%d'%i]=affine_backward(dout,cache['cache%d'%i])
# print "W%d s is "%(i)+str(grads['W%d'%i].shape)
grads['W%d'%(i)]+=self.params['W%d'%(i)]*self.reg
return loss, grads
n