zoukankan      html  css  js  c++  java
  • 图与景区管理系统

    图与景区管理系统

    功能简介

    序号 功能 实现原理
    1 创建景区景点图 文件读写、结构体
    2 查询景点信息 边的关系
    3 旅游景点导航 链表、深度优先搜索
    4 搜索最短路径 Dijkstra算法、最短路径
    5 铺设电路规划 Prim算法、最小生成树
    0 退出 exit(0)

    源代码(Visual Studio 2017下)

    数据结构头文件

    Graph.h

    #ifndef GRAPH_H
    #define GRAPH_H
    
    struct Vex
    {
    	int num;//景点编号
    	char name[20];//景点名字
    	char desc[1024];//景点介绍
    };
    struct Edge
    {
    	int vex1;//边的第一个顶点
    	int vex2;//边的第二个顶点
    	int weight;//权值
    };
    struct Graph
    {
    	int m_aAdjMatrix[20][20];//邻接矩阵
    	Vex m_aVexs[20];//顶点信息组数
    	int m_nVexNum;//当前图的顶点个数
    };
    typedef struct Path
    {
    	int vexs[20];//保存一条路径
    	Path *next;//下一条路径
    }*PathList;//链表PathList用来保存所有路径
    
    void Init(void);
    bool InsertVex(Vex sVex);
    bool InsertEdge(Edge sEdge);
    Vex GetVex(int nVex);
    int FindEdge(int nVex, Edge aEdge[]);
    int GetVexnum(void);
    void DFS(int nVex, bool isVisited[], int &nIndex, PathList &pList);
    void DFSTraverse(int nVex,PathList &pList);
    bool TraverseOrNot(int now[], int i);
    int FindShortPath(int nVexStart, int nVexEnd, Edge aPath[]);
    int FindMinTree(Edge aPath[]);
    #endif GRAPH_H
    
    

    数据结构源文件Graph.cpp

    
    #include"Graph.h"
    #include<iostream>
    using namespace std;
    Graph graph;
    int EdgeNum;
    Edge aEdge[100];
    int allPath[20][20] = {0};
    int PathNum=0;
    //bool isVisited[20];
    bool TraverseOrNot(int now[], int i)
    {
    	for (int p = 0; p < PathNum; p++)
    	{
    		for (int q = 0; q < i; q++)
    		{
    			if (allPath[p][q] != now[q])
    			{
    				break;
    			}
    			if ((allPath[p][q] == now[q] && q == i))
    				return true;//曾被访问
    		}
    	}
    	return false;
    }
    
    
    void Init(void)
    {
    	for (int i = 0; i < 20; i++)
    	{
    		for (int j = 0; j < 20; j++)
    		{
    			if (i == j)
    				graph.m_aAdjMatrix[i][j] = 0;
    			else
    				graph.m_aAdjMatrix[i][j] = 0xffff;
    		}
    	}
    	graph.m_nVexNum = 0;
    }
    
    bool InsertVex(Vex sVex)
    {
    	if (graph.m_nVexNum >= 20)
    	{//顶点已满
    		return false;
    	}
    	graph.m_aVexs[graph.m_nVexNum++] = sVex;
    	return true;
    }
    
    bool InsertEdge(Edge sEdge)
    {
    	if (sEdge.vex1 == sEdge.vex2)
    		return false;
    	graph.m_aAdjMatrix[sEdge.vex1][sEdge.vex2] = sEdge.weight;
    	graph.m_aAdjMatrix[sEdge.vex2][sEdge.vex1] = sEdge.weight;
    	return true;
    }
    
    Vex GetVex(int nVex)
    {
    	return graph.m_aVexs[nVex];
    }
    /*
    int FindEdge(int nVex, Edge aEdge[])
    {
    	for (int i = 0; i < EdgeNum; i++)
    	{
    		if (aEdge[i].vex1 == nVex)
    		{
    			cout << graph.m_aVexs[aEdge[i].vex1].name << "->" << graph.m_aVexs[aEdge[i].vex2].name << " " << aEdge[i].weight << endl;
    		}
    		if(aEdge[i].vex2 == nVex)
    			cout << graph.m_aVexs[aEdge[i].vex2].name << "->" << graph.m_aVexs[aEdge[i].vex1].name << " " << aEdge[i].weight << endl;
    	}
    	return true;
    }
    */
    
    int FindEdge(int nVex, Edge aEdge[])
    {
    	int k = 0;
    	for (int i = 0; i < graph.m_nVexNum; i++)
    	{
    		if (graph.m_aAdjMatrix[i][nVex] > 0 && graph.m_aAdjMatrix[i][nVex] < 0xffff)
    		{
    			aEdge[k].vex1 = nVex;
    			aEdge[k].vex2 = i;
    			aEdge[k].weight = graph.m_aAdjMatrix[i][nVex];
    			k++;
    		}
    	}
    	return k;
    }
    
    int GetVexnum(void)
    {
    	return graph.m_nVexNum;
    }
    /*
    //输出一行的深度优先搜索
    void DFS(int nVex, bool isVisited[], int &nIndex, PathList &pList)
    {//nIndex记录遍历的深度
    	if (nIndex == graph.m_nVexNum - 1)
    		pList->next = NULL;
    	isVisited[nVex] = true;
    	pList->vexs[nIndex++] = nVex;
    	for (int i = 0; i < graph.m_nVexNum; i++)
    	{
    		if (graph.m_aAdjMatrix[nVex][i] > 0 && graph.m_aAdjMatrix[nVex][i] < 0xffff && !isVisited[i]&&pList->next)
    		{
    			DFS(i, isVisited, nIndex, pList);//递归调用DFS
    			isVisited[i] = false;
    			nIndex--;
    		}
    	}
    }
    */
    void DFS(int nVex, bool isVisited[], int &nIndex, PathList &pList)
    {//nIndex记录遍历的深度
    
    
    	//if (nIndex == graph.m_nVexNum -1 && TraverseOrNot(pList->vexs, graph.m_nVexNum))
    	//{
    	//	nIndex--;
    	//}
    
    	isVisited[nVex] = true;
    	pList->vexs[nIndex++] = nVex;
    	//判断是否所有的顶点都已被访问过
    	int nVexNum = 0;
    	for (int i = 0; i < graph.m_nVexNum; i++)
    	{
    		if (isVisited[i])
    			nVexNum++;
    	}
    	if (nIndex == graph.m_nVexNum )
    	{
    		pList ->next= (PathList)malloc(sizeof(Path));
    		for (int i = 0; i < graph.m_nVexNum; i++)
    		{
    			pList->next->vexs[i] = pList->vexs[i];
    		}
    		pList = pList->next;
    		pList->next = NULL;
    	}
    
    	else 
    	{
    		for (int i = 0; i < graph.m_nVexNum; i++)
    		{
    			if (graph.m_aAdjMatrix[nVex][i] > 0 && graph.m_aAdjMatrix[nVex][i] < 0xffff && !isVisited[i])
    			{
    				DFS(i, isVisited, nIndex, pList);//递归调用DFS
    				isVisited[i] = false;
    				nIndex--;
    			}
    		}
    	}
    
    }
    
    void DFSTraverse(int nVex, PathList &pList)
    {
    	int nIndex = 0;
    	bool isVisited[20] = { false };
    	DFS(nVex, isVisited, nIndex, pList);
    }
    
    int FindShortPath(int nVexStart, int nVexEnd, Edge aPath[])
    {
    	int nShortPath[20][20];//保存最短路径
    	int nShortDistance[20];//保存最短距离
    	bool isVisited[20];//判断某顶点是否已加入到最短路径
    	int v;
    
    	//初始化
    	for (v = 0; v < graph.m_nVexNum; v++)
    	{
    		isVisited[v] = false;
    		if (graph.m_aAdjMatrix[nVexStart][v])
    		{
    			//初始化该顶点到其他顶点的最短距离,默认为两顶点间的距离
    			nShortDistance[v] = graph.m_aAdjMatrix[nVexStart][v];
    		}
    		else
    		{
    			//如果两顶点v和nVexStart不相连,则最短距离为最大值
    			nShortDistance[v] = 0xffff;
    		}
    		nShortPath[v][0] = nVexStart;//起始点为nVexStart
    		for (int w = 1; w < graph.m_nVexNum; w++)
    		{
    			nShortPath[v][w] = -1;//初始化最短路径
    		}
    	}
    	//初始化,nVexStart顶点加入到集合中
    	isVisited[nVexStart] = true;
    	int min;
    	for (int i = 1; i < graph.m_nVexNum; i++)
    	{
    		min = 0xffff;
    		bool bAdd = false;//判断是否还有顶点可以加入集合
    		for (int w = 0; w < graph.m_nVexNum; w++)
    		{
    			if (!isVisited[w])
    			{
    				if (nShortDistance[w] < min)
    				{
    					v = w;//顶点离nVexStart最近
    					min = nShortDistance[w];//最短距离为min
    					bAdd = true;
    				}
    			}
    		}
    		//如果没有顶点可加入集合,则跳出循环
    		if (!bAdd)
    		{
    			break;
    		}
    		isVisited[v] = true;//将w顶点加入到集合
    		nShortPath[v][i] = v;
    		for (int w = 0; w < graph.m_nVexNum; w++)
    		{
    			if (!isVisited[w] && (min + graph.m_aAdjMatrix[v][w] < nShortDistance[w]) /*&& (min + graph.m_aAdjMatrix[v][w]) < 0xffff*/)
    			{
    				//更新当前最短路径及距离
    				nShortDistance[w] = min + graph.m_aAdjMatrix[v][w];
    				for (int i = 0; i < graph.m_nVexNum; i++)
    				{
    					//如果通过w到达顶点i的距离比较短,则将w的最短路径复制给i
    					nShortPath[w][i] = nShortPath[v][i];
    				}
    			}
    		}
    		for (int p = 0; p < graph.m_nVexNum; p++)
    		{
    			for (int j = 0; j < graph.m_nVexNum; j++)
    			{
    				cout<<nShortPath[p][j]<<" ";
    			}
    			cout << endl;
    		}
    		cout << endl;
    	}
    	int nNum=0;
    	int finalpath[20];
    	int onlypath[20] = { 0 };
    	int q = 0;
    	for (int i = 0; i < graph.m_nVexNum; i++)
    	{
    		finalpath[i] = nShortPath[nVexEnd][i];
    	}
    	for (int i = 0; i < graph.m_nVexNum; i++)
    	{
    		if (finalpath[i] != -1)
    		{
    			nNum++;
    			onlypath[q++] = finalpath[i];
    		}
    	}
    	for (int i = 0; i < nNum-1; i++)
    	{
    		aPath[i].vex1 = onlypath[i];
    		aPath[i].vex2 = onlypath[i + 1];
    //		aPath[i].weight = nShortDistance[onlypath[i+1]];
    		aPath[i].weight = graph.m_aAdjMatrix[aPath[i].vex1][aPath[i].vex2];
    	//	if (i > 0)
    	//	{
    	//		aPath[i].weight = nShortDistance[onlypath[i + 1]] - nShortDistance[onlypath[i]];
    			
    	//	}
    	}
    	return nNum;
    }
    /*
    int FindMinTree(Edge aPath[])
    {
    	int before,after;//before为前一个已访问的点,after为下一个将要访问的点
    	int lowcost[20];//保存着未被访问即(V-U)中编号为k的顶点到U中所有顶点的最小权值
    	int closest[20];//保存着U中到V-U中编号为K的顶点权值最小的编号
    	int used[20];//保存某点是否已经被访问
    	int min;
    
    	for (int i = 0; i < graph.m_nVexNum; i++)
    	{
    		lowcost[i] = graph.m_aAdjMatrix[0][i];//到i点的最小距离即为a点到i点的距离
    		closest[i] = 0;//到i点最小距离的点是a点
    		used[i] = 0;//所有点都未被访问
    	}
    	used[0] = 1;//a点已被访问
    	before = 0;
    	after = 0;
    	for (int i = 0; i < graph.m_nVexNum - 1; i++)
    	{
    
    		min = 0xffff;
    
    		for (int k = 1; k < graph.m_nVexNum; k++)
    		{
    			if (used[k] == 0 && lowcost[k] < min)
    			{
    				min = lowcost[k];
    				after = k;
    			}
    		}
    		cout << "before = " << before << "	after = " << after << endl;
    		used[after] = 1;//j点已加入U集合
    		aPath[i].vex1 = before;
    		aPath[i].vex2 = after;
    		aPath[i].weight = graph.m_aAdjMatrix[before][after];
    		for (int j = 0; j < graph.m_nVexNum; j++)
    		{
    			for (int k = 0; k < graph.m_nVexNum; k++)
    			{
    				if ((used[j]==1)&&(used[k] == 0) && (graph.m_aAdjMatrix[j][k] < lowcost[k]))
    				{
    					lowcost[k] = graph.m_aAdjMatrix[j][k];
    					closest[k] = after;
    					before = j;
    				}
    			}
    		}
    	}
    
    	for (int i = 0; i < graph.m_nVexNum - 1; i++)
    	{
    		cout << aPath[i].vex1 << " -> " << aPath[i].vex2 << "	" << aPath[i].weight << endl;
    	}
    	int sum = 0;
    	for (int i = 0; i < graph.m_nVexNum - 1; i++)
    	{
    		cout << graph.m_aVexs[aPath[i].vex1].name << " - " << graph.m_aVexs[aPath[i].vex2].name << "	" << aPath[i].weight << endl;
    		sum += aPath[i].weight;
    	}
    	cout << endl << endl << "pop stack!" << endl;
    
    	return 0;
    }
    */
    
    int FindMinTree(Edge aPath[])
    {
    	int before, after;//before为前一个已访问的点,after为下一个将要访问的点
    	int used[20];//保存某点是否已经被访问
    	int min;
    
    	for (int i = 0; i < graph.m_nVexNum; i++)
    	{
    		used[i] = 0;//所有点都未被访问
    	}
    	used[0] = 1;//a点已被访问
    	before = 0;
    	after = 0;
    	for (int i = 0; i < graph.m_nVexNum - 1; i++)
    	{
    		min = 0xffff;
    		for (int j = 0; j < graph.m_nVexNum; j++)
    		{
    			for (int k = 0; k < graph.m_nVexNum; k++)
    			{
    				if ((used[j] == 1) && (used[k] == 0) && (graph.m_aAdjMatrix[j][k] < min))
    				{
    					min = graph.m_aAdjMatrix[j][k];
    					before = j;
    					after = k;
    				}
    			}
    		}
    //		cout << i << "." << "before = " << before << "	after = " << after << endl;
    		used[after] = 1;//j点已加入U集合
    		aPath[i].vex1 = before;
    		aPath[i].vex2 = after;
    		aPath[i].weight = graph.m_aAdjMatrix[before][after];
    	}
    	return 0;
    }
    

    操作实现头文件Tourism.h

    #ifndef TOURISM_H
    #define TOURISM_H
    
    void CreateGraph(void);
    void GetSpotInfo(void);
    void TravelPath(void);
    void FindShortPath(void);
    void DesignPath(void);
    #endif
    
    

    操作实现源文件Tourism.cpp

    #include"Tourism.h"
    #include"Graph.h"
    #include<iostream>
    using namespace std;
    extern Graph graph;
    extern int EdgeNum;
    extern Edge aEdge[100];
    
    //extern bool isVisited[20];
    #pragma warning (disable : 4996)
    
    
    void CreateGraph(void)
    {
    	Init();
    	FILE *fp = NULL;
    	fp = fopen("Vex.txt", "r");
    	if (!fp)
    	{
    		printf("Failed to open the file!");
    		exit(-1);
    	}
    	int num;
    	Vex sVex;
    	fscanf(fp, "%d", &num);
    	cout << "===== 创建景区景点图 =====" << endl;
    	cout << "顶点数目:" << num<<endl;
    	cout << "----- 顶点 -----" << endl;
    	for (int i = 0; i < num; i++)
    	{
    		fscanf(fp, "%d", &sVex.num);
    		fscanf(fp, "%s", &sVex.name);
    		fscanf(fp, "%s", &sVex.desc);
    		cout << sVex.num << "-" << sVex.name << endl;
    		InsertVex(sVex);
    	}
    	fclose(fp);
    	fp = fopen("Edge.txt", "r");
    	if (!fp)
    	{
    		printf("Failed to open this file!");
    		exit(-1);
    	}
    	Edge sEdge;
    	cout << "----- 边 -----" << endl;
    	EdgeNum = 0;
    	while (!feof(fp))
    	{
    //		printf("!!!");
    		fscanf(fp, "%d", &sEdge.vex1);
    		fscanf(fp, "%d", &sEdge.vex2);
    		fscanf(fp, "%d", &sEdge.weight);
    		printf("<v%d,v%d> %d
    ", sEdge.vex1, sEdge.vex2, sEdge.weight);
    		InsertEdge(sEdge);
    		aEdge[EdgeNum++] = sEdge;
    	}
    	fclose(fp);
    	cout << endl << endl;
    }
    
    
    void GetSpotInfo(void)
    {
    	cout << "===== 查询景点信息 =====" << endl;
    	for (int i = 0; i < graph.m_nVexNum; i++)
    	{
    		cout << graph.m_aVexs[i].num << "-" << graph.m_aVexs[i].name << endl;
    	}
    	int nVex;
    	cout << "输入想要查询的景点编号: ";
    	cin >> nVex;
    	Vex sVex=GetVex(nVex);
    	printf("%s
    %s
    ", sVex.name,sVex.desc);
    	cout << "----- 周边景区 -----" << endl;
    	int k = FindEdge(nVex, aEdge);
    	for (int i = 0; i < k; i++)
    	{
    		cout << graph.m_aVexs[aEdge[i].vex1].name << "->" << graph.m_aVexs[aEdge[i].vex2].name << " " << aEdge[i].weight <<"m"<< endl;
    	}
    	cout << endl << endl;
    }
    
    void TravelPath(void)
    {
    	PathList pList;
    	pList = (Path*)malloc(sizeof(Path));
    	PathList PHead;
    	PHead = pList;
    //	pList->next = (Path*)malloc(sizeof(Path));
    	cout << "===== 旅游景点导航 =====" << endl;
    	for (int i = 0; i < graph.m_nVexNum; i++)
    	{
    		cout << graph.m_aVexs[i].num << "-" << graph.m_aVexs[i].name << endl;
    	}
    	cout << "请输入起始点编号:";
    	int nVex;
    	cin >> nVex;
    	DFSTraverse(nVex, pList);
    	cout << "导航路线为: " << endl;
    //	cout << "路线1 : ";
    //	cout<<graph.m_aVexs[nVex].name;
    	pList = PHead;
    	int i = 1;
    	while (pList->next)
    	{
    		Vex sVex = GetVex(pList->vexs[0]);
    		cout << "路线" << i++ << ":" << sVex.name;
    		for (int j = 1; j<graph.m_nVexNum; j++)
    		{
    			printf(" -> %s", graph.m_aVexs[pList->vexs[j]].name);
    //			sVex = GetVex(pList->vexs[j]);
    //			cout << " -> " << sVex.name;
    		}
    		cout << endl;
    		Path *temp = pList;
    		pList = pList->next;
    		free(temp);
    	}
    	free(pList);
    	pList = NULL;
    	PHead = NULL;
    	cout << endl<<endl<<endl;
    //	free(pList);
    //	free(pList->next);
    }
    
    void FindShortPath(void)
    {
    	cout << "===== 搜索最短路径 =====" << endl;
    	for (int i = 0; i < graph.m_nVexNum; i++)
    	{
    		cout << graph.m_aVexs[i].num << "-" << graph.m_aVexs[i].name << endl;
    	}
    	int nVexStart;
    	int nVexEnd;
    	cout << "请输入起点的编号: ";
    	cin >> nVexStart;
    	cout << "请输入终点的编号: ";
    	cin >> nVexEnd;
    	Edge aPath[20];
    	int nNum=FindShortPath(nVexStart, nVexEnd, aPath);
    	Vex sVex = GetVex(aPath[0].vex1);
    	int nLength = 0;
    	cout << "最短路线为: ";
    	cout << graph.m_aVexs[nVexStart].name;
    	for (int i = 0; i < nNum-1; i++)
    	{
    		sVex = GetVex(aPath[i].vex2);
    		cout << "->" << sVex.name;
    		nLength += aPath[i].weight;
    	}
    	cout << endl;
    	cout << "最短距离为: " << nLength << endl;
    	cout << endl << endl;
    }
    
    void DesignPath(void)
    {
    	cout << "===== 铺设电路规划 =====" << endl;
    	cout << "在以下两个景点之间铺设电路:" << endl;
    	Edge aPath[20];
    	FindMinTree(aPath);
    	int sum=0;
    	for (int i = 0; i < graph.m_nVexNum - 1; i++)
    	{
    		cout << graph.m_aVexs[aPath[i].vex1].name << " - " << graph.m_aVexs[aPath[i].vex2].name << "	" << aPath[i].weight << endl;
    		sum += aPath[i].weight;
    	}
    	cout << "铺设电路的总长度为:" << sum;
    	cout << endl << endl << endl;
    }
    
    

    主函数源文件Main.cpp

    #include<iostream>
    #include"Tourism.h"
    using namespace std;
    #pragma warning( disable : 4996)
    
    int main()
    {
    	while (true)
    	{
    		//输出界面
    		cout << "====景区信息管理系统====" << endl;
    		cout << "1.创建景区景点图" << endl;
    		cout << "2.查询景点信息" << endl;
    		cout << "3.旅游景点导航" << endl;
    		cout << "4.搜索最短路径" << endl;
    		cout << "5.铺设电路规划" << endl;
    		cout << "0.退出" << endl;
    		int choice;
    		cout << "请输入操作编号<0~5>: ";
    		cin >> choice;
    		switch (choice)
    		{
    		case 1:
    		{
    			CreateGraph();
    			break;
    		}
    		case 2:
    		{
    			GetSpotInfo();
    			break;
    		}
    		case 3:
    		{
    			TravelPath();
    			break;
    		}
    		case 4:
    		{
    			FindShortPath();
    			break;
    		}
    		case 5:
    		{
    			DesignPath();
    			break;
    		}
    		case 0:
    		{
    			cout << "退出系统!" << endl;
    			exit(0);
    		}
    		default:
    		{
    			cout << "请输入操作编号<0~5>: ";
    			break;
    		}
    		}
    
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    jQuery教程(一)
    jQuery教程(五)安全邮件列表
    jQuery教程(八)样式表切换
    jQuery教程(六)Jquery生成的HTML
    jQuery教程(七)更安全的Contact Forms,不带CAPTCHA
    Atcoder Grand Contest 005 E Sugigma: The Showdown(思维题)
    ORACLE数据库事务隔离级别
    c#操作Excel并指定单元格格式
    c# 获取客户端ip
    Webservice实现及原理
  • 原文地址:https://www.cnblogs.com/sgawscd/p/10888699.html
Copyright © 2011-2022 走看看