zoukankan      html  css  js  c++  java
  • Pandas学习之(一)

    1.Pandas的数据结构介绍--Series

    Series类似于一维数组的对象,它由一组数据(各种Numpy数据类型)以及一组与之相关的数据标签(即索引)组成.Series的字符串表示形式为:索引在左边,值在右边.可以通过Series的 values和index属性获取其数组表示形式和索引对象:

    1)源数据是列表

     显示其值和索引

     2)根据指定的索引和值创建Series

    3) 根据索引的方式,选取Series中的单个或一组值:

     4)Numpy数组运算(根据布尔型数组进行过滤标量乘法应用数学函数等)都会保留索引和值之间的链接

     5)将Series看成一个定长有序的字典,用在许多原本需要字典参数的函数中:

     6)可以根据Python字典来创建Series:

     只传入一个字典,则结果Series中的索引就是原字典的键(有序排列)

     

     7)检测缺失数据

     8)series最重要的一个功能,是在算术运算中自动对齐不同索引的数据

     8)Series对象本身及其索引都有一个name属性,该属性跟pandas的其他的关键功能非常密切:

     9)s索引可以通过赋值的方式修改

     2.Pandas的数据结构介绍--DataFrame

    DataFrame是表格型的数据结构,含有一组有序的列,每列可以是不同的值类型(数值字符串布尔型).DataFrame既有行索引也有列索引,可以看做是由Series组成的字典,其行操作和列操作基本平衡.

    1)构建DataFrame的方法有很多,最常用的一种是直接传入一个由等长列表或Numpy数组组成的字典

     

     如果指定了列序列,则DataFrame的列就会按照指定顺序进行排列:

     如果传入的列在数据中找不到,就会产生NA值:

     2)通过字典标记或属性的方式,可以将DataFrame获取为一个Series

    3)行也可以用位置或名称进行索引,比如用索引字段ix

     4)列可以通过赋值的方式进行修改.例如,我们可以给孔的"debt"列附上一个标量值或一组值:

     5)将列表或数组赋给某个列,其长度必须跟DataFrame的长度相匹配.

     

     6)为不存在的列赋值会创建出一个新列,关键字del用于删除列

     警告:通过索引的方式返回的列是视图不是副本.因此对返回的Series所做的任何修改会全部反映到DataFrame上,通过Series的copy方法即可显式的复制列.

    7)嵌套字典也可用于生成DataFrame

     

     8)由Series组成的字典用法类似

    如果设置了DataFrame的index和columns的name属性,则会显示出来

     9)跟Series一样,DataFrame的values属性也会以二维ndarray的形式返回DataFrame中的数据

     如果DataFrame各列的数据类型不同,则值数组的数据类型就会选用能兼容所有列的数据类型

  • 相关阅读:
    fd_set 用法
    初步认识迭代服务器和并发服务器
    慢系统调用与信号中断
    nigix以及相关
    IO多路复用的几种实现机制的分析
    伪终端
    linux非阻塞的socket EAGAIN的错误处理
    从输入 URL 到页面加载完成的过程中都发生了什么事情?
    7.9 函数的定义
    7.8 文件操作
  • 原文地址:https://www.cnblogs.com/sggggr/p/12200110.html
Copyright © 2011-2022 走看看