1 Help on built-in module math: 2 NAME 3 math 4 DESCRIPTION 5 This module is always available. It provides access to the 6 mathematical functions defined by the C standard. 7 FUNCTIONS 8 acos(...) 9 acos(x) 10 11 Return the arc cosine (measured in radians) of x. 12 13 acosh(...) 14 acosh(x) 15 16 Return the inverse hyperbolic cosine of x. 17 18 asin(...) 19 asin(x) 20 21 Return the arc sine (measured in radians) of x. 22 23 asinh(...) 24 asinh(x) 25 26 Return the inverse hyperbolic sine of x. 27 28 atan(...) 29 atan(x) 30 31 Return the arc tangent (measured in radians) of x. 32 33 atan2(...) 34 atan2(y, x) 35 36 Return the arc tangent (measured in radians) of y/x. 37 Unlike atan(y/x), the signs of both x and y are considered. 38 39 atanh(...) 40 atanh(x) 41 42 Return the inverse hyperbolic tangent of x. 43 44 ceil(...) 45 ceil(x) 46 47 Return the ceiling of x as an Integral. 48 This is the smallest integer >= x. 49 50 copysign(...) 51 copysign(x, y) 52 53 Return a float with the magnitude (absolute value) of x but the sign 54 of y. On platforms that support signed zeros, copysign(1.0, -0.0) 55 returns -1.0. 56 57 cos(...) 58 cos(x) 59 60 Return the cosine of x (measured in radians). 61 62 cosh(...) 63 cosh(x) 64 65 Return the hyperbolic cosine of x. 66 67 degrees(...) 68 degrees(x) 69 70 Convert angle x from radians to degrees. 71 72 erf(...) 73 erf(x) 74 75 Error function at x. 76 77 erfc(...) 78 erfc(x) 79 80 Complementary error function at x. 81 82 exp(...) 83 exp(x) 84 85 Return e raised to the power of x. 86 87 expm1(...) 88 expm1(x) 89 90 Return exp(x)-1. 91 This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x. 92 93 fabs(...) 94 fabs(x) 95 96 Return the absolute value of the float x. 97 98 factorial(...) 99 factorial(x) -> Integral 100 101 Find x!. Raise a ValueError if x is negative or non-integral. 102 103 floor(...) 104 floor(x) 105 106 Return the floor of x as an Integral. 107 This is the largest integer <= x. 108 109 fmod(...) 110 fmod(x, y) 111 112 Return fmod(x, y), according to platform C. x % y may differ. 113 114 frexp(...) 115 frexp(x) 116 117 Return the mantissa and exponent of x, as pair (m, e). 118 m is a float and e is an int, such that x = m * 2.**e. 119 If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0. 120 121 fsum(...) 122 fsum(iterable) 123 124 Return an accurate floating point sum of values in the iterable. 125 Assumes IEEE-754 floating point arithmetic. 126 127 gamma(...) 128 gamma(x) 129 130 Gamma function at x. 131 132 gcd(...) 133 gcd(x, y) -> int 134 greatest common divisor of x and y 135 136 hypot(...) 137 hypot(x, y) 138 139 Return the Euclidean distance, sqrt(x*x + y*y). 140 141 isclose(...) 142 isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) -> bool 143 144 Determine whether two floating point numbers are close in value. 145 146 rel_tol 147 maximum difference for being considered "close", relative to the 148 magnitude of the input values 149 abs_tol 150 maximum difference for being considered "close", regardless of the 151 magnitude of the input values 152 153 Return True if a is close in value to b, and False otherwise. 154 155 For the values to be considered close, the difference between them 156 must be smaller than at least one of the tolerances. 157 158 -inf, inf and NaN behave similarly to the IEEE 754 Standard. That 159 is, NaN is not close to anything, even itself. inf and -inf are 160 only close to themselves. 161 162 isfinite(...) 163 isfinite(x) -> bool 164 165 Return True if x is neither an infinity nor a NaN, and False otherwise. 166 167 isinf(...) 168 isinf(x) -> bool 169 170 Return True if x is a positive or negative infinity, and False otherwise. 171 172 isnan(...) 173 isnan(x) -> bool 174 175 Return True if x is a NaN (not a number), and False otherwise. 176 177 ldexp(...) 178 ldexp(x, i) 179 180 Return x * (2**i). 181 182 lgamma(...) 183 lgamma(x) 184 185 Natural logarithm of absolute value of Gamma function at x. 186 187 log(...) 188 log(x[, base]) 189 190 Return the logarithm of x to the given base. 191 If the base not specified, returns the natural logarithm (base e) of x. 192 193 log10(...) 194 log10(x) 195 196 Return the base 10 logarithm of x. 197 198 log1p(...) 199 log1p(x) 200 201 Return the natural logarithm of 1+x (base e). 202 The result is computed in a way which is accurate for x near zero. 203 204 log2(...) 205 log2(x) 206 207 Return the base 2 logarithm of x. 208 209 modf(...) 210 modf(x) 211 212 Return the fractional and integer parts of x. Both results carry the sign 213 of x and are floats. 214 215 pow(...) 216 pow(x, y) 217 218 Return x**y (x to the power of y). 219 220 radians(...) 221 radians(x) 222 223 Convert angle x from degrees to radians. 224 225 sin(...) 226 sin(x) 227 228 Return the sine of x (measured in radians). 229 230 sinh(...) 231 sinh(x) 232 233 Return the hyperbolic sine of x. 234 235 sqrt(...) 236 sqrt(x) 237 238 Return the square root of x. 239 240 tan(...) 241 tan(x) 242 243 Return the tangent of x (measured in radians). 244 245 tanh(...) 246 tanh(x) 247 248 Return the hyperbolic tangent of x. 249 250 trunc(...) 251 trunc(x:Real) -> Integral 252 253 Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method. 254 DATA 255 e = 2.718281828459045 256 inf = inf 257 nan = nan 258 pi = 3.141592653589793 259 tau = 6.283185307179586 260 FILE 261 (built-in)