zoukankan      html  css  js  c++  java
  • 7、kafka知识总结

    1、kafka是什么
    类JMS消息队列,结合JMS中的两种模式,可以有多个消费者主动拉取数据,在JMS中只有点对点模式才有消费者主动拉取数据。
    kafka是一个生产-消费模型。
    Producer:生产者,只负责数据生产,生产者的代码可以集成到任务系统中。
    数据的分发策略由producer决定,默认是defaultPartition Utils.abs(key.hashCode) % numPartitions
    Broker:当前服务器上的Kafka进程,俗称拉皮条。只管数据存储,不管是谁生产,不管是谁消费。
    在集群中每个broker都有一个唯一brokerid,不得重复。
    Topic:目标发送的目的地,这是一个逻辑上的概念,落到磁盘上是一个partition的目录。partition的目录中有多个segment组合(index,log)
    一个Topic对应多个partition[0,1,2,3],一个partition对应多个segment组合。一个segment有默认的大小是1G。
    每个partition可以设置多个副本(replication-factor 1),会从所有的副本中选取一个leader出来。所有读写操作都是通过leader来进行的。
    特别强调,和mysql中主从有区别,mysql做主从是为了读写分离,在kafka中读写操作都是leader。
    ConsumerGroup:数据消费者组,ConsumerGroup可以有多个,每个ConsumerGroup消费的数据都是一样的。
    可以把多个consumer线程划分为一个组,组里面所有成员共同消费一个topic的数据,组员之间不能重复消费。

    2、kafka生产数据时的分组策略
    默认是defaultPartition Utils.abs(key.hashCode) % numPartitions
    上文中的key是producer在发送数据时传入的,produer.send(KeyedMessage(topic,myPartitionKey,messageContent))

    3、kafka如何保证数据的完全生产
    ack机制:broker表示发来的数据已确认接收无误,表示数据已经保存到磁盘。
    0:不等待broker返回确认消息
    1:等待topic中某个partition leader保存成功的状态反馈
    -1:等待topic中某个partition 所有副本都保存成功的状态反馈

    4、broker如何保存数据
    在理论环境下,broker按照顺序读写的机制,可以每秒保存600M的数据。主要通过pagecache机制,尽可能的利用当前物理机器上的空闲内存来做缓存。
    当前topic所属的broker,必定有一个该topic的partition,partition是一个磁盘目录。partition的目录中有多个segment组合(index,log)

    5、partition如何分布在不同的broker上
    int i = 0
    list{kafka01,kafka02,kafka03}

    for(int i=0;i<5;i++){
    brIndex = i%broker;
    hostName = list.get(brIndex)
    }

    6、consumerGroup的组员和partition之间如何做负载均衡
    最好是一一对应,一个partition对应一个consumer。
    如果consumer的数量过多,必然有空闲的consumer。

    算法:
    假如topic1,具有如下partitions: P0,P1,P2,P3
    加入group中,有如下consumer: C1,C2
    首先根据partition索引号对partitions排序: P0,P1,P2,P3
    根据consumer.id排序: C0,C1
    计算倍数: M = [P0,P1,P2,P3].size / [C0,C1].size,本例值M=2
    然后依次分配partitions: C0 = [P0,P1],C1=[P2,P3],即Ci = [P(i * M),P((i + 1) * M -1)]

    7、如何保证kafka消费者消费数据是全局有序的
    伪命题
    如果要全局有序的,必须保证生产有序,存储有序,消费有序。
    由于生产可以做集群,存储可以分片,消费可以设置为一个consumerGroup,要保证全局有序,就需要保证每个环节都有序。
    只有一个可能,就是一个生产者,一个partition,一个消费者。这种场景和大数据应用场景相悖。

     

  • 相关阅读:
    Max Sum Plus Plus HDU
    Monkey and Banana HDU
    Ignatius and the Princess IV HDU
    Extended Traffic LightOJ
    Tram POJ
    Common Subsequence HDU
    最大连续子序列 HDU
    Max Sum HDU
    畅通工程再续
    River Hopscotch POJ
  • 原文地址:https://www.cnblogs.com/shan13936/p/13838420.html
Copyright © 2011-2022 走看看