zoukankan      html  css  js  c++  java
  • STM32F4 -- How to use the DMA burst feature

    Bits 15:13 Reserved, must be kept at reset value.

    Bits 12:8 DBL[4:0]: DMA burst length

    This 5-bit vector defines the number of DMA transfers

    (the timer detects a burst transfer when a read or a write access to the TIMx_DMAR register address is performed).

    • 00000: 1 transfer
    • 00001: 2 transfers
    • 00010: 3 transfers
    • ...
    • 10001: 18 transfers

    Bits 7:5 Reserved, must be kept at reset value.

    Bits 4:0 DBA[4:0]: DMA base address

    This 5-bits vector defines the base-address for DMA transfers (when read/write access are done through the TIMx_DMAR address).

    DBA is defined as an offset starting from the address of the TIMx_CR1 register.

    Example:

    • 00000: TIMx_CR1,
    • 00001: TIMx_CR2,
    • 00010: TIMx_SMCR,

    ...


    Example: Let us consider the following transfer: DBL = 7 transfers and DBA = TIMx_CR1.

    In this case the transfer is done to/from 7 registers starting from the TIMx_CR1 address.

    Bits 15:0 DMAB[15:0]: DMA register for burst accesses


    A read or write operation to the DMAR register accesses the register located at the address 

    (TIMx_CR1 address) + (DBA + DMA index) x 4

    DBA is defined as an offset starting from the address of the TIMx_CR1 register.

    where TIMx_CR1 address is the address of the control register 1,

    DBA is the DMA base address configured in TIMx_DCR register,

    DMA index is automatically controlled by the DMA transfer,

    and ranges from 0 to DBL (DBL configured in TIMx_DCR).

    DBL This 5-bit vector defines the number of DMA transfers

    Example of how to use the DMA burst feature

    In this example the timer DMA burst feature is used to update the contents of the CCRx registers (x = 2, 3, 4)

    with the DMA transferring half words into the CCRx registers.

    This is done in the following steps:

    1. Configure the corresponding DMA channel as follows:
    – DMA channel peripheral address is the DMAR register address
    – DMA channel memory address is the address of the buffer in the RAM
       containing the data to be transferred by DMA into CCRx registers.
    Number of data to transfer = 3 (See note below).: CCR2, CCR3, CCR4
    – Circular mode disabled.

    2. Configure the DCR register by configuring the DBA and DBL bit fields as follows:
    DBL = 3 transfers, DBA = 0xE. :: 4 * 0x0E = 0x38

    3. Enable the TIMx update DMA request (set the UDE bit in the DIER register).

    4. Enable TIMx

    5. Enable the DMA channel

    Note:

    This example is for the case where every CCRx register to be updated once.

    Let's take the example of a buffer in the RAM containing data1, data2, data3.

    The data is transferred to the CCRx registers as follows:

    on the update DMA request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to CCR4 and

    If every CCRx register is to be updated twice for example, the number of data to transfer should be 6 -- DMA

    NumberOfTransfer = UpdateTimes * DMA burst length<DBL>.

    Let's take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and data6.

    The data is transferred to the CCRx registers as follows:

    on the first update DMA request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to CCR4 and

    on the second update DMA request, data4 is transferred to CCR2, data5 is transferred to CCR3 and data6 is transferred to CCR4.

    /**
      ******************************************************************************
      * @file    TIM/TIM_DMABurst/main.c 
      * @author  MCD Application Team
      * @version V1.1.0
      * @date    18-January-2013
      * @brief   Main program body
      ******************************************************************************
      * @attention
      *
      * <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
      *
      * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
      * You may not use this file except in compliance with the License.
      * You may obtain a copy of the License at:
      *
      *        http://www.st.com/software_license_agreement_liberty_v2
      *
      * Unless required by applicable law or agreed to in writing, software 
      * distributed under the License is distributed on an "AS IS" BASIS, 
      * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
      * See the License for the specific language governing permissions and
      * limitations under the License.
      *
      ******************************************************************************
      */
    
    /* Includes ------------------------------------------------------------------*/
    #include "main.h"
    
    /** @addtogroup STM32F4xx_StdPeriph_Examples
      * @{
      */
    
    /** @addtogroup TIM_DMABurst
      * @{
      */ 
    
    /* Private typedef -----------------------------------------------------------*/
    /* Private define ------------------------------------------------------------*/
    #define TIM1_DMAR_ADDRESS ((uint32_t)0x4001004C) /* TIM DMAR address */
    
    /* Private macro -------------------------------------------------------------*/
    /* Private variables ---------------------------------------------------------*/
    GPIO_InitTypeDef         GPIO_InitStructure;
    DMA_InitTypeDef          DMA_InitStructure;
    TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
    TIM_OCInitTypeDef        TIM_OCInitStructure;
    
    uint16_t aSRC_Buffer[6] = {0x0FFF, 0x0000, 0x0555}; // APR, RCR, CCR1
    
    /* Private function prototypes -----------------------------------------------*/
    static void TIM_Config(void);
    
    /* Private functions ---------------------------------------------------------*/
    
    /**
      * @brief  Main program
      * @param  None
      * @retval None
      */
    int main(void)
    {
      /*!< At this stage the microcontroller clock setting is already configured, 
           this is done through SystemInit() function which is called from startup
           files (startup_stm32f40xx.s/startup_stm32f427x.s) before to branch to 
           application main. 
           To reconfigure the default setting of SystemInit() function, refer to
           system_stm32f4xx.c file
         */     
    
      /* TIM1 Configuration */
      TIM_Config();       
      
      /* Time base configuration */
      /* -----------------------------------------------------------------------
        TIM1 Configuration: generate 1 PWM signal using the DMA burst mode:
      
        TIM1 input clock (TIM1CLK) is set to 2 * APB2 clock (PCLK2), since APB2 prescaler is different from 1.   
          TIM1CLK = 2 * PCLK2, PCLK2 = HCLK / 2 => TIM1CLK = 2 * (HCLK / 2) = HCLK = SystemCoreClock
        
        To get TIM1 counter clock at 24 MHz, the prescaler is computed as follows:
          Prescaler = (TIM1CLK / TIM1 counter clock) - 1
          Prescaler = (SystemCoreClock /24 MHz) - 1
      
        The TIM1 period is 5.8 KHz: 
    TIM1 Frequency = TIM1 counter clock/(ARR + 1) = 24 MHz / 4096 = 5.85 KHz TIM1 Channel1 duty cycle = (TIM1_CCR1/ TIM1_ARR)* 100 = 33.33% Note: SystemCoreClock variable holds HCLK frequency and is defined in system_stm32f4xx.c file. Each time the core clock (HCLK) changes, user had to call SystemCoreClockUpdate() function to update SystemCoreClock variable value. Otherwise, any configuration based on this variable will be incorrect. -----------------------------------------------------------------------
    */ TIM_TimeBaseStructure.TIM_Period = 0xFFFF; TIM_TimeBaseStructure.TIM_Prescaler = (uint16_t) (SystemCoreClock / 24000000) - 1; TIM_TimeBaseStructure.TIM_ClockDivision = 0x0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); /* TIM Configuration in PWM Mode */ TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = 0xFFF; TIM_OC1Init(TIM1, &TIM_OCInitStructure); /* TIM1 DMAR Base register and DMA Burst Length Config */ TIM_DMAConfig(TIM1, TIM_DMABase_ARR, TIM_DMABurstLength_3Transfers); // APR, RCR, CCR1 /* TIM1 DMA Update enable */ TIM_DMACmd(TIM1, TIM_DMA_Update, ENABLE); /* TIM1 enable */ TIM_Cmd(TIM1, ENABLE); /* TIM1 PWM Outputs Enable */ TIM_CtrlPWMOutputs(TIM1, ENABLE); /* Enable DMA2 Stream5 */ DMA_Cmd(DMA2_Stream5, ENABLE); /* Wait until DMA2 Stream5 end of Transfer */ while (!DMA_GetFlagStatus(DMA2_Stream5, DMA_FLAG_TCIF5)) { } /* Infinite loop */ while(1) { } } /** * @brief Configure the TIM1 Pins. * @param None * @retval None */ static void TIM_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; /* TIM1 clock enable */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); /* GPIOA clock enable */ RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); /* DMA2 clock enable */ RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE); /* GPIOA Configuration: PA8(TIM1 CH1) as alternate function push-pull */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStructure); /* Connect TIM pins to AF1 */ GPIO_PinAFConfig(GPIOA, GPIO_PinSource8, GPIO_AF_TIM1); /* DeInitialize the DMA2 Stream5 */ DMA_DeInit(DMA2_Stream5); DMA_InitStructure.DMA_Channel = DMA_Channel_6; // TIM1_UP : DMA2_Stream5 DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)TIM1_DMAR_ADDRESS; DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)aSRC_Buffer; DMA_InitStructure.DMA_DIR = DMA_DIR_MemoryToPeripheral; DMA_InitStructure.DMA_BufferSize = 3; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh; DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Enable; DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_Full; DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; DMA_Init(DMA2_Stream5, &DMA_InitStructure); } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d ", file, line) */ while (1) {} } #endif /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
  • 相关阅读:
    memcached 服务器安装
    农行接口开发
    mysql备份
    IIS下的FTP使用
    建行接口
    Android网络编程之一个Android下菜单系统模块的实现(客户端—更新菜单)
    Android网络编程之一个Android下菜单系统模块的实现(客户端—更新桌号)
    Android网络编程之下菜单系统中的真机调试问题小结
    Android网络编程之一个Android下菜单系统模块的实现(服务器端—更新桌号)
    Android之一个简单的Activity启动画面
  • 原文地址:https://www.cnblogs.com/shangdawei/p/4753284.html
Copyright © 2011-2022 走看看