zoukankan      html  css  js  c++  java
  • USACO1.22Transformations

    Transformations

    A square pattern of size N x N (1 <= N <= 10) black and white square tiles is transformed into another square pattern. Write a program that will recognize the minimum transformation that has been applied to the original pattern given the following list of possible transformations:

    • #1: 90 Degree Rotation: The pattern was rotated clockwise 90 degrees.
    • #2: 180 Degree Rotation: The pattern was rotated clockwise 180 degrees.
    • #3: 270 Degree Rotation: The pattern was rotated clockwise 270 degrees.
    • #4: Reflection: The pattern was reflected horizontally (turned into a mirror image of itself by reflecting around a vertical line in the middle of the image).
    • #5: Combination: The pattern was reflected horizontally and then subjected to one of the rotations (#1-#3).
    • #6: No Change: The original pattern was not changed.
    • #7: Invalid Transformation: The new pattern was not obtained by any of the above methods.

    In the case that more than one transform could have been used, choose the one with the minimum number above.

    PROGRAM NAME: transform

    INPUT FORMAT

    Line 1: A single integer, N
    Line 2..N+1: N lines of N characters (each either `@' or `-'); this is the square before transformation
    Line N+2..2*N+1: N lines of N characters (each either `@' or `-'); this is the square after transformation

    SAMPLE INPUT (file transform.in)

    3
    @-@
    ---
    @@-
    @-@
    @--
    --@
    

    OUTPUT FORMAT

    A single line containing the the number from 1 through 7 (described above) that categorizes the transformation required to change from the `before' representation to the `after' representation.

    SAMPLE OUTPUT (file transform.out)

    1
    
    破题 真麻烦 给你一个字符矩形 在给你一个字符矩形 问用上述的哪种转换可以把第一个变成第二个 输出最小的转换编号
    View Code
      1 /*
      2  ID: your_id_here
      3  LANG: C++
      4  TASK: transform
      5  */
      6 #include <iostream>
      7 #include<cstdio>
      8 #include<string.h>
      9 using namespace std;
     10 int n;
     11 int judge(char s[][11],char x[][11])
     12 {
     13     int flag = 1,i,j;
     14     for(i = 1; i <= n ; i++)
     15     {
     16         for(j = 1; j <= n ; j++)
     17         {
     18             if(s[i][j]!=x[i][j])
     19             {
     20                 flag = 0;
     21                 break;
     22             }
     23         }
     24         if(!flag)
     25         break;
     26     }
     27     return flag;
     28 }
     29 int main()
     30 {
     31     freopen("transform.in","r",stdin);
     32     freopen("transform.out","w",stdout);
     33     int i,j,m,flag,k;
     34     char c[11][11],s[11][11],x[7][11][11];
     35     scanf("%d",&n);
     36     for(i = 1; i <= n ; i++)
     37     {
     38         getchar();
     39         for(j = 1; j <= n ; j++)
     40         c[i][j] = getchar();
     41     }
     42     for(i = 1; i <= n ; i++)
     43     {
     44         getchar();
     45         for(j = 1; j <= n ; j++)
     46         s[i][j] = getchar();
     47     }
     48     for(i = 1 ; i <= n ; i++)
     49     for(j = 1; j <= n ; j++)
     50     {
     51         x[0][i][j] = c[n+1-j][i];
     52         x[1][i][j] = c[n+1-i][n+1-j];
     53         x[2][i][j] = c[j][n+1-i];
     54         x[3][i][j] = c[i][1+n-j];
     55     }
     56     if(judge(s,x[0]))
     57     {
     58         printf("1\n");
     59     }
     60     else
     61     if(judge(s,x[1]))
     62     printf("2\n");
     63     else
     64     if(judge(s,x[2]))
     65     printf("3\n");
     66     else
     67     if(judge(s,x[3]))
     68     printf("4\n");
     69     else
     70     {
     71         for(i = 1 ; i <= n ; i++)
     72         for(j = 1; j <= n ; j++)
     73         x[4][i][j] = x[3][n+1-j][i];
     74         if(judge(s,x[4]))
     75         printf("5\n");
     76         else
     77         {
     78             for(i = 1 ; i <= n ; i++)
     79             for(j = 1; j <= n ; j++)
     80             x[4][i][j] = x[3][n+1-i][n+1-j];
     81             if(judge(s,x[4]))
     82             printf("5\n");
     83             else
     84             {
     85                  for(i = 1 ; i <= n ; i++)
     86                  for(j = 1; j <= n ; j++)
     87                  x[4][i][j] = x[3][j][n+1-i];
     88                  if(judge(s,x[4]))
     89                  printf("5\n");
     90                  else
     91                  if(judge(s,c))
     92                  {
     93                      printf("6\n");
     94                  }
     95                  else
     96                  printf("7\n");
     97             }
     98         }
     99     }
    100     fclose(stdin);
    101     fclose(stdout);
    102     return 0;
    103 }
  • 相关阅读:
    拓端tecdat|R语言投资组合优化求解器:条件约束最优化、非线性规划求解
    拓端tecdat|R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析
    拓端tecdat|R语言聚类有效性:确定最优聚类数分析IRIS鸢尾花数据和可视化
    拓端tecdat|R语言k-means聚类、层次聚类、主成分(PCA)降维及可视化分析鸢尾花iris数据集
    【拓端tecdat】R语言用Hessian-free 、Nelder-Mead优化方法对数据进行参数估计
    springcloud之zuul网关服务并携带头信息转发token
    windows环境搭建Vue开发环境
    JVM之top+jstack分析cpu过高原因
    JVM调优之jstack找出最耗cpu的线程并定位代码
    用自顶向下、逐步细化的方法进行以下算法的设计: 1. 输出1900---2000年中是软黏的年份,符合下面两个条件之一的年份是闰年:
  • 原文地址:https://www.cnblogs.com/shangyu/p/2649742.html
Copyright © 2011-2022 走看看