zoukankan      html  css  js  c++  java
  • R Seurat 单细胞处理pipline 代码

      1 options(stringsAsFactors = F )
      2 rm(list = ls())
      3 library(Seurat)
      4 library(dplyr)
      5 library(ggplot2)
      6 library(Hmisc)
      7 library(pheatmap)
      8 #读入数据
      9 
     10 
     11 #合并gene去batch
     12 expr_1 <- readRDS("C:/Gu_lab/PA/result/pipline_results/P1_normal/expr.RDS")
     13 expr_1 <- RenameCells(expr_1,add.cell.id = "P1",for.merge = T )
     14 expr_8 <- readRDS("C:/Gu_lab/PA/result/pipline_results/P8_normal/expr.RDS")
     15 expr_8 <- RenameCells(expr_8,add.cell.id = "P8",for.merge = T )
     16 expr_all_P1_P8_nobatch <- FindIntegrationAnchors(c(expr_1,expr_8))
     17 expr_all_P1_P8_nobatch <- IntegrateData(anchorset = expr_all_P1_P8_nobatch, dims = 1:30)
     18 expr_all_P1_P8_nobatch <- FindVariableFeatures(expr_all_P1_P8_nobatch)
     19 all.genes <- rownames(expr_all_P1_P8_nobatch)
     20 expr_all_P1_P8_nobatch <- ScaleData(expr_all_P1_P8_nobatch,features = all.genes)
     21 expr_all_P1_P8_nobatch <- RunPCA(expr_all_P1_P8_nobatch,features = VariableFeatures(object = expr_all_P1_P8_nobatch))
     22 ElbowPlot(expr_all_P1_P8_nobatch)
     23 expr_all_P1_P8_nobatch <- FindNeighbors(expr_all_P1_P8_nobatch,dims = 1:20)
     24 expr_all_P1_P8_nobatch <- FindClusters(expr_all_P1_P8_nobatch,resolution = 0.5)
     25 expr_all_P1_P8_nobatch <- RunUMAP(expr_all_P1_P8_nobatch, dims = 1:20)
     26 DimPlot(expr_all_P1_P8_nobatch,reduction = "umap",cols =c("#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#FF0000","#000099","#660066","#333333") )
     27 cell_soruce <-rep(c('P1','P8'), times = c(1651,523)) 
     28 newident_1 <- factor(cell_soruce)
     29 expr_all_P1_P8_nobatch_save <- expr_all_P1_P8_nobatch
     30 Idents(expr_all_P1_P8_nobatch) <- newident_1
     31 #expr_nobatch_seurat@active.ident <- newident_1
     32 DimPlot(expr_all_P1_P8_nobatch,reduction = "umap",cols =c("#F0E442", "#999999", "#D55E00", "#CC79A7","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73","#FF0000","#333333") )
     33 expr_all_P1_P8_nobatch <- expr_all_P1_P8_nobatch_save
     34 outdir <- "C:/Gu_lab/PA/result/Pred_result/P1_P8_normal/"
     35 saveRDS(expr_all_P1_P8_nobatch_save, file =paste0(outdir,"expr_all_P1_P8.RDS"))
     36 
     37 #根据Marker去掉免疫细胞
     38 pdf(file = paste0(outdir,"Tcell_feature.pdf"),width = 12,height = 4)
     39 VlnPlot(expr_all_P1_P8_nobatch,features = c("CD2","CD3D","CD3E","CD3G","CD4","CD8","CD45"),pt.size = 0)#T-cell Markers
     40 dev.off()
     41 #FeaturePlot(expr_all_P1_P8_nobatch,features = c("CD2","CD3D","CD3E","CD3G","CD4","CD8","CD45"))
     42 pdf(file = paste0(outdir,"Bcell_feature.pdf"),width = 8,height = 2)
     43 VlnPlot(expr_all_P1_P8_nobatch,features = c("PTPRC","CD79A","CD19","CD20","CD45"),pt.size = 0)#T-cell Markers
     44 dev.off()
     45 pdf(file = paste0(outdir,"NK_cell_feature.pdf"),width = 8,height = 2)
     46 VlnPlot(expr_all_P1_P8_nobatch,features = c("PTPRC","NKG7","CD56"),pt.size = 0)#T-cell Markers
     47 dev.off()
     48 pdf(file = paste0(outdir,"Macrophage-cell_feature.pdf"),width = 16,height = 6)
     49 VlnPlot(expr_all_P1_P8_nobatch,features = c("CD14","CD163", "CD68", "CSF1R","CD33","HLA-DR","AIF1","FCER1G", "FCGR3A", "TYROBP"),pt.size = 0)#Macrophage-cell Markers
     50 dev.off()
     51 pdf(file = paste0(outdir,"Fibroblasts-cell_feature.pdf"),width = 16,height = 6)
     52 VlnPlot(expr_all_P1_P8_nobatch,features = c("ACTA2","FAP", "PDPN","COL1A2","DCN", "COL3A1", "COL6A1","S100A4","COL1A1","THY1"),pt.size = 0)#Fibroblasts-cell Markers
     53 dev.off()
     54 pdf(file = paste0(outdir,"Endothelial-cell_feature.pdf"),width = 12,height = 4)
     55 VlnPlot(expr_all_P1_P8_nobatch,features = c("PLVAP","PECAM1","VWF","ENG","MCAM","CD146"),pt.size = 0)#Endothelial-cell Markers
     56 dev.off()
     57 
     58 pdf(file = paste0(outdir,"Somatotrope_feature.pdf"),width = 12,height = 4)
     59 Somatotrope_feature =  c("Pappa2","Ceacam10","Tcerg1l","Cabp2","Wnt10a","RP24-294M17.1","Mmp7","Ghrhr","Gh1")
     60 Somatotrope_feature = toupper(Somatotrope_feature)
     61 VlnPlot(expr_all_P1_P8_nobatch, features =Somatotrope_feature,pt.size = 0)
     62 #FeaturePlot(expr_all_P1_P8_nobatch,features = Somatotrope_feature)
     63 dev.off()
     64 
     65 
     66 
     67 
     68 pdf(file = paste0(outdir,"Lactotrope_feature.pdf"),width = 12,height = 4)
     69 Lactotrope_feature =  c("Prl","Agtr1a","Syndig1","Angpt1","Edil3","6030419C18Rik","Hepacam2","Cilp","Akr1c14")
     70 Lactotrope_feature = toupper(Lactotrope_feature)
     71 VlnPlot(expr_all_P1_P8_nobatch, features =Lactotrope_feature,pt.size = 0)
     72 #FeaturePlot(expr_all_P1_P8_nobatch,features = Lactotrope_feature)
     73 dev.off()
     74 
     75 pdf(file = paste0(outdir,"Corticotrope_feature.pdf"),width = 12,height = 6)
     76 Corticotrope_feature =  c("Gpc5","Tnnt1","Tnni3","Gm15543","Cplx3","Egr4","Cdh8","Galnt9","Pomc")
     77 Corticotrope_feature = toupper(Corticotrope_feature)
     78 VlnPlot(expr_all_P1_P8_nobatch, features =Corticotrope_feature,pt.size = 0)
     79 #FeaturePlot(expr_all_P1_P8_nobatch,features = Corticotrope_feature)
     80 dev.off()
     81 
     82 pdf(file = paste0(outdir,"Melanotrope_feature.pdf"),width = 12,height = 4)
     83 Melanotrope_feature = c("Oacyl","Esm1","Pkib","Gulo","Megf11","Rbfox3","Scn2a1","Pax7","Pcsk2")
     84 Melanotrope_feature = toupper(Melanotrope_feature)
     85 VlnPlot(expr_all_P1_P8_nobatch, features =Melanotrope_feature,pt.size = 0)
     86 #FeaturePlot(expr_all_P1_P8_nobatch,features = Melanotrope_feature)
     87 dev.off()
     88 
     89 pdf(file = paste0(outdir,"Thyrotrope_feature.pdf"),width = 8,height = 2)
     90 Thyrotrope_feature = c("Tshb","Trhr","Dio2")
     91 Thyrotrope_feature = toupper(Thyrotrope_feature)
     92 VlnPlot(expr_all_P1_P8_nobatch, features =Thyrotrope_feature,pt.size = 0)
     93 #FeaturePlot(expr_all_P1_P8_nobatch,features = Thyrotrope_feature)
     94 dev.off()
     95 
     96 pdf(file = paste0(outdir,"Stem_cell_feature.pdf"),width = 16,height = 4)
     97 Stem_cell_feature =  c("Cyp2f2","Lcn2","Mia","Cpxm2","Rbpms","Gm266","Cdh26","Aqp3","Aqp4","CD8A")
     98 Stem_cell_feature = toupper(Stem_cell_feature)
     99 VlnPlot(expr_all_P1_P8_nobatch, features =Stem_cell_feature,pt.size = 0)
    100 #FeaturePlot(expr_all_P1_P8_nobatch,features = Stem_cell_feature)
    101 dev.off()
    102 
    103 pdf(file = paste0(outdir,"Proliferatring_Pou1f1_feature.pdf"),width = 16,height = 4)
    104 Proliferatring_Pou1f1_feature = c("POU1f1","Pbk","Spc25","Ube2c","Hmmr","Ckap2l","Spc25","Cdca3","Birc5","Ccnb1")
    105 Proliferatring_Pou1f1_feature = toupper(Proliferatring_Pou1f1_feature)
    106 VlnPlot(expr_all_P1_P8_nobatch, features =Proliferatring_Pou1f1_feature,pt.size = 0)
    107 #FeaturePlot(expr_all_P1_P8_nobatch,features = Proliferatring_Pou1f1_feature)
    108 dev.off()
    109 
    110 #激素的Gene
    111 pdf(file = paste0(outdir,"VlnPlot.pdf"),width = 16,height = 6)
    112 VlnPlot(expr_all_P1_P8_nobatch, features =c("TSHB","TBX19","PCSK2","FHSB","GH1", "PRL", "POMC", "CGA", "LHB", "POU1F1","MIA"),pt.size = 0)
    113 dev.off()
    114 
    115 #Cell_Type
    116 expr_all_P1_P8_nobatch <- readRDS(paste0(outdir,"expr_all_P1_P8.RDS"))
    117 expr <- RenameIdents(expr_all_P1_P8_nobatch,'4' = 'T_NK','5' = 'Fibroblasts','3' = 'Endothelial','1' = 'Macrophage','0' = 'Somatotrope','2' = 'Lactotrope','7' = 'Corticotrope','8' = 'Gonadotrope','6' = 'Stem cell') 
    118 DimPlot(expr,cols = c("#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#FF0000","#333333"))
    119 
    120 
    121 
    122 ##Fig2 DEgene heatmap
    123 
    124 expr_all_P1_P8_nobatch.markers <- FindAllMarkers(expr_all_P1_P8_nobatch)
    125 top10 <-  expr_all_P1_P8_nobatch.markers %>% group_by(cluster) %>% top_n(n = 10, wt = avg_logFC)
    126 DoHeatmap(expr_all_P1_P8_nobatch, features = top10$gene) + NoLegend()
    127 
    128 top5 <-  expr_all_P1_P8_nobatch.markers %>% group_by(cluster) %>% top_n(n = 5, wt = avg_logFC)
    129 DoHeatmap(expr_all_P1_P8_nobatch, features = top5$gene) + NoLegend()
    130 
    131 pdf(file = paste0(outdir,"vlnplot_new.pdf"),width = 16,height = 24)
    132 VlnPlot(expr_all_P1_P8_nobatch, features = top5$gene, pt.size = 0)
    133 #for(i in 1:length(top5$gene)){
    134   #print(top5$gene[i])
    135   #VlnPlot(expr_all_P1_P8_nobatch, features = top5$gene, pt.size = 0)
    136   #FeaturePlot(expr_all_P1_P8_nobatch,features = top5$gene[i])
    137 #}
    138 dev.off()
    139 #mice cell type, reclus
    140 mice_expr_init <- readRDS(file = "C:/Gu_lab/PA/data/mouse/mice_exp.rds")
    141 DimPlot(mice_expr_init,reduction = "umap",cols =c("#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#FF0000","#000099","#660066","#333333") )
    142 
    143 
    144 #mice_corr_P1&P8
    145 
    146 mice_expr<- readRDS(file = "C:/Gu_lab/PA/data/mouse/mice_exp_final.rds")
    147 DimPlot(mice_expr,reduction = "umap",cols =c("#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#FF0000","#000099","#660066","#333333") )
    148 
    149 #top10 <-  expr_all_P1_P8_nobatch.markers %>% group_by(cluster) %>% top_n(n = 10, wt = avg_logFC)
    150 #
    151 top10 <-  expr_all_P1_P8_nobatch.markers %>% group_by(cluster) %>% top_n(n = 10, wt = p_val)
    152 
    153 top5 <-  expr_all_P1_P8_nobatch.markers %>% group_by(cluster) %>% top_n(n = 5, wt = p_val)
    154 
    155 #定义corr矩阵,row_mice,col_human
    156 featureGene_mice <- mice_expr@assays$RNA@var.features
    157 featureGene_human <- toupper(featureGene_mice)
    158 corr_matrix = matrix(nrow = 11, ncol = 9)
    159 mice_ident <- mice_expr@active.ident
    160 expr_all_P1_P8_nobatch_ident <- expr_all_P1_P8_nobatch@active.ident
    161 expr_ident <- expr@active.ident
    162 scale_expr_matrix_mice <- mice_expr@assays$RNA@scale.data
    163 scale_expr_matrix_human <- expr@assays$integrated@scale.data
    164 tm_rowname <- rownames(scale_expr_matrix_mice)
    165 tm_rowname_human<- rownames(scale_expr_matrix_human)
    166 
    167 for( i in 1:11){
    168   featrue_x = array(rep(0,length(featureGene_mice)),dim = length(featureGene_mice))
    169   x_name = levels(mice_ident)[i]
    170   expr_mice <- scale_expr_matrix_mice[,which(mice_ident==x_name)]
    171   for(k in 1:length(featureGene_mice)){
    172     id = which(tm_rowname == featureGene_mice[k])
    173     featrue_x[k] = sum(expr_mice[id,])
    174   }
    175   featrue_x = featrue_x/length(colnames(scale_expr_matrix_mice))
    176   for(j in 1:9){
    177     featrue_y = array(rep(0,length(featureGene_mice)),dim = length(featureGene_mice))
    178     y_name = levels(expr_ident)[j]
    179     expr_human <- scale_expr_matrix_human[,which(expr_ident==y_name)]
    180     for(k in 1:length(featureGene_human)){
    181       if(featureGene_human[k] %in% tm_rowname_human){
    182         id = which(tm_rowname_human == featureGene_human[k])
    183         featrue_y[k] = sum(expr_human[id,])
    184       }
    185     }
    186     featrue_y = featrue_y/length(colnames(scale_expr_matrix_human))
    187     print(featrue_y[1:10])
    188     corr_matrix[i,j] = cor(featrue_x,featrue_y,method = "spearman")
    189   }
    190 }
    191 
    192 rownames(corr_matrix) <- levels(mice_ident)
    193 colnames(corr_matrix) <- levels(expr_ident)
    194 #pheatmap(corr_matrix,clustering_distance_rows = "correlation",display_numbers = T,number_format = "%.2f")
    195 pheatmap(corr_matrix,clustering_distance_rows = "correlation",cluster_rows = T,cluster_cols =T,display_numbers = T,number_format = "%.2f")
    196 
    197 
    198 #########################################################################################################
    199 #老鼠的数据处理见 mouse_data_init.R
    200 #use human var gene
    201 corr_matrix = matrix(nrow = 11, ncol = 9)
    202 mice_ident <- mice_expr@active.ident
    203 expr_ident <- expr@active.ident
    204 #scale_expr_matrix_mice <- mice_expr@assays$RNA@scale.data
    205 #scale_expr_matrix_human <- expr@assays$integrated@scale.data
    206 tm_rowname <- rownames(scale_expr_matrix_mice)
    207 tm_rowname_human<- rownames(scale_expr_matrix_human)
    208 featureGene_human <- expr@assays$integrated@var.features
    209 featureGene_mice <- tolower(featureGene_human)
    210 featureGene_mice <- capitalize(featureGene_mice)
    211 
    212 for( i in 1:11){
    213   featrue_x = array(rep(0,length(featureGene_mice)),dim = length(featureGene_mice))
    214   x_name = levels(mice_ident)[i]
    215   expr_mice <- scale_expr_matrix_mice[,which(mice_ident==x_name)]
    216   for(k in 1:length(featureGene_mice)){
    217     if(featureGene_mice[k] %in% tm_rowname){
    218       id = which(tm_rowname == featureGene_mice[k])
    219       featrue_x[k] = sum(expr_mice[id,])
    220     }
    221   }
    222   featrue_x = featrue_x/length(colnames(scale_expr_matrix_mice))
    223   for(j in 1:9){
    224     featrue_y = array(rep(0,length(featureGene_mice)),dim = length(featureGene_mice))
    225     y_name = levels(expr_ident)[j]
    226     expr_human <- scale_expr_matrix_human[,which(expr_ident==y_name)]
    227     for(k in 1:length(featureGene_human)){
    228       if(featureGene_human[k] %in% tm_rowname_human){
    229         id = which(tm_rowname_human == featureGene_human[k])
    230         featrue_y[k] = sum(expr_human[id,])
    231       }
    232     }
    233     featrue_y = featrue_y/length(colnames(scale_expr_matrix_human))
    234     print(featrue_y[1:10])
    235     corr_matrix[i,j] = cor(featrue_x,featrue_y,method = "spearman")
    236   }
    237 }
    238 
    239 rownames(corr_matrix) <- levels(mice_ident)
    240 colnames(corr_matrix) <- levels(expr_ident)
    241 #pheatmap(corr_matrix,clustering_distance_rows = "correlation",display_numbers = T,number_format = "%.2f")
    242 pheatmap(corr_matrix,clustering_distance_rows = "correlation",cluster_rows = T,cluster_cols =T,display_numbers = T,number_format = "%.2f")
    243 
    244 
    245 
    246 
    247 
    248 
    249 #########################################################################################################33
    250 
    251 
    252 
    253 expr_all_P1_P8_nobatch_filter <- SubsetData(expr_all_P1_P8_nobatch, ident.remove = '9')
    254 saveRDS(expr_all_P1_P8_nobatch_filter, file =paste0(outdir,"expr_all_P1_P8_filter.RDS"))
    255 expr_all_P1_P8_nobatch_filter <- SubsetData(expr_all_P1_P8_nobatch_filter,ident.remove = '9')
    256 
    257 
    258 pdf(file = paste0(outdir,"Dimplot_filter_cell.pdf"),width = 9,height = 7)
    259 DimPlot(expr_all_P1_P8_nobatch_filter,cols = c("#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#FF0000","#333333"))
    260 dev.off()
    261 Gene_train <- read.table("C:/Gu_lab/PA/result/mouse_scaleFeatures_rf/Train_Gene_capital_1.txt",sep = "
    ",stringsAsFactors = F)
    262 Gene_train <- Gene_train[,1]
    263 Gene_train
    264 
    265 scale_data <- expr_all_P1_P8_nobatch_filter@assays$integrated@scale.data
    266 rownames(scale_data)
    267 var_gene_exp <- scale_data[which(rownames(scale_data) %in% Gene_train),]
    268 
    269 write.table(var_gene_exp,paste0(outdir,"exp_train_gene_scale_cells.txt"),row.names = T,col.names = T, quote = F)
    270 #
    271 #python 预测
    272 #
    273 
    274 expr <- readRDS("C:/Gu_lab/PA/result/Pred_result/P1_P8_tumor/expr_all_P1_P8_filter.RDS")
    275 Gene_list <- read.table("C:/Gu_lab/PA/result/mouse_scaleFeatures_rf/Train_Gene_capital_1.txt")
    276 #expr<- RunPCA(expr,features = Gene_list$V1)
    277 #DimPlot(expr, reduction = "pca")
    278 #ElbowPlot(expr)
    279 #expr <- FindNeighbors(expr, dims = 1:10)
    280 #expr <- FindClusters(expr, resolution = 0.5)
    281 #expr <- RunUMAP(expr,dims = 1:10)
    282 
    283 
    284 
    285 
    286 
    287 #Plot 预测结果
    288 outdir <- "C:/Gu_lab/PA/result/Pred_result/P1_P8_tumor/Replot/"
    289 #expr <- readRDS("C:/Gu_lab/PA/result/Pred_result/P1_P8_tumor/expr_filter_cells.rds")
    290 
    291 Pred_data <- read.table('C:/Gu_lab/PA/result/Pred_result/P1_P8_tumor/Pred_results_scale_cell_resample.txt')
    292 newident <- Pred_data['V2'][[1]]
    293 expr[["CellType"]] <- Pred_data['V2'][[1]]
    294 newident <- factor(newident)
    295 Idents(expr) <- newident
    296 expr[["PredScore"]] <- Pred_data['V3'][[1]]
    297 
    298 #expr_filter_unknown<- SubsetData(expr,ident.use = c("Lactotrope","Thyrotrope","Somatotrope"))
    299 expr_filter_unknown <- subset(expr,idents = c("Lactotrope","Somatotrope"))
    300 expr_filter_unknown <- RunPCA(expr_filter_unknown,features = Gene_list$V1[1:100])
    301 DimPlot(expr_filter_unknown, reduction = "pca")
    302 ElbowPlot(expr_filter_unknown)
    303 expr_filter_unknown <- RunUMAP(expr_filter_unknown,dims = 1:20,n.neighbors = 50)
    304 
    305 pdf(file = paste0(outdir,"Dimplot_Pred_results.pdf"),width = 9,height = 7)
    306 #去掉数目特别少的类
    307 DimPlot(expr_filter_unknown,pt.size = 1,cols =c("#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#FF0000","#333333") )
    308 dev.off()
    309 #DimPlot(expr,cols =c("#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#FF0000","#333333") )
    310 Alapha = expr_filter_unknown@meta.data$PredScore
    311 umap_pos <- expr_filter_unknown@reductions$umap@cell.embeddings
    312 umap_pos_frame <- data.frame(umap_pos)
    313 
    314 #(tsne_pos_frame, aes(x = tSNE_1,y = tSNE_2,color = newident)) + geom_point(size =3,shape = 20,alpha = Alapha) 
    315 #输出文件的位置
    316 dirout <- "C:/Gu_lab/PA/result/Pred_result/P1_P8_tumor/Replot/"
    317 
    318 #不同类别细胞分开画
    319 iden_cell = expr_filter_unknown@meta.data$CellType
    320 for(i in 1:length(iden_cell)){
    321   if(iden_cell[i]!="Lactotrope") {
    322     iden_cell[i] = "Others"
    323   }
    324 }
    325 Cell_type = iden_cell
    326 #gg <- ggplot(data = tsne_pos_frame)+geom_point(mapping = aes(x = tSNE_1,y = tSNE_2,color = CC),size =1,shape = 20,alpha = Alapha)+labs(title = "Lactotrope_like cell") + scale_color_hue(name = "Cell_type",labels = c("Lactotrope","Others")) 
    327 #gg
    328 pdf(file = paste0(dirout,"Lactotrope.pdf"),width = 9,height = 7)
    329 ggplot(umap_pos_frame, aes(x = UMAP_1,y = UMAP_2,color = Cell_type )) + geom_point(size =1,shape = 20,alpha = Alapha)+labs(title = "Lactotrope_like cell")+scale_colour_manual(values=c( "red","grey"))+theme(plot.title = element_text(hjust = 0.5))
    330 dev.off()
    331 
    332 #不同类别细胞分开画
    333 iden_cell =expr_filter_unknown@meta.data$CellType
    334 for(i in 1:length(iden_cell)){
    335   if(iden_cell[i]!="Melanotrope") {
    336     iden_cell[i] = "Others"
    337   }
    338 }
    339 Cell_type = iden_cell
    340 #gg <- ggplot(data = tsne_pos_frame)+geom_point(mapping = aes(x = tSNE_1,y = tSNE_2,color = CC),size =1,shape = 20,alpha = Alapha)+labs(title = "Lactotrope_like cell") + scale_color_hue(name = "Cell_type",labels = c("Lactotrope","Others")) 
    341 pdf(file = paste0(dirout,"Melanotrope.pdf"),width = 9,height = 7)
    342 ggplot(umap_pos_frame, aes(x = UMAP_1,y = UMAP_2,color = Cell_type )) + geom_point(size =1,shape = 20,alpha = Alapha)+labs(title = "Melanotrope_like cell")+scale_colour_manual(values=c( "red","grey"))+theme(plot.title = element_text(hjust = 0.5))
    343 dev.off()
    344 
    345 
    346 #不同类别细胞分开画
    347 iden_cell = expr_filter_unknown@meta.data$CellType
    348 for(i in 1:length(iden_cell)){
    349   if(iden_cell[i]!="Corticotrope") {
    350     iden_cell[i] = "Others"
    351   }
    352 }
    353 Cell_type = iden_cell
    354 #gg <- ggplot(data = tsne_pos_frame)+geom_point(mapping = aes(x = tSNE_1,y = tSNE_2,color = CC),size =1,shape = 20,alpha = Alapha)+labs(title = "Lactotrope_like cell") + scale_color_hue(name = "Cell_type",labels = c("Lactotrope","Others")) 
    355 pdf(file = paste0(dirout,"Corticotrope.pdf"),width = 9,height = 7)
    356 ggplot(umap_pos_frame, aes(x = UMAP_1,y = UMAP_2,color = Cell_type )) + geom_point(size =1,shape = 20,alpha = Alapha)+labs(title = "Corticotrope_like cell")+scale_colour_manual(values=c( "red","grey"))+theme(plot.title = element_text(hjust = 0.5))
    357 dev.off()
    358 
    359 #不同类别细胞分开画
    360 iden_cell = expr_filter_unknown@meta.data$CellType
    361 for(i in 1:length(iden_cell)){
    362   if(iden_cell[i]!="Proliferating_Pou1f1") {
    363     iden_cell[i] = "Others"
    364   }
    365 }
    366 Cell_type = iden_cell
    367 #gg <- ggplot(data = tsne_pos_frame)+geom_point(mapping = aes(x = tSNE_1,y = tSNE_2,color = CC),size =1,shape = 20,alpha = Alapha)+labs(title = "Lactotrope_like cell") + scale_color_hue(name = "Cell_type",labels = c("Lactotrope","Others")) 
    368 pdf(file = paste0(dirout,"Proliferating_Pou1f1.pdf"),width = 9,height = 7)
    369 ggplot(umap_pos_frame, aes(x = UMAP_1,y = UMAP_2,color = Cell_type )) + geom_point(size =1,shape = 20,alpha = Alapha)+labs(title = "Proliferating_Pou1f1_like cell")+scale_colour_manual(values=c( "grey","red"))+theme(plot.title = element_text(hjust = 0.5))
    370 dev.off()
    371 
    372 #不同类别细胞分开画
    373 iden_cell = expr_filter_unknown@meta.data$CellType
    374 for(i in 1:length(iden_cell)){
    375   if(iden_cell[i]!="Somatotrope") {
    376     iden_cell[i] = "Others"
    377   }
    378 }
    379 Cell_type = iden_cell
    380 #gg <- ggplot(data = tsne_pos_frame)+geom_point(mapping = aes(x = tSNE_1,y = tSNE_2,color = CC),size =1,shape = 20,alpha = Alapha)+labs(title = "Lactotrope_like cell") + scale_color_hue(name = "Cell_type",labels = c("Lactotrope","Others")) 
    381 pdf(file = paste0(dirout,"Somatotrope.pdf"),width = 9,height = 7)
    382 ggplot(umap_pos_frame, aes(x = UMAP_1,y = UMAP_2,color = Cell_type )) + geom_point(size =1,shape = 20,alpha = Alapha)+labs(title = "Somatotrope_like cell")+scale_colour_manual(values=c( "grey","red"))+theme(plot.title = element_text(hjust = 0.5))
    383 dev.off()
    384 
    385 #不同类别细胞分开画
    386 iden_cell = Pred_data['V2'][[1]]
    387 for(i in 1:length(iden_cell)){
    388   if(iden_cell[i]!="Stem_cell") {
    389     iden_cell[i] = "Others"
    390   }
    391 }
    392 Cell_type = iden_cell
    393 #gg <- ggplot(data = tsne_pos_frame)+geom_point(mapping = aes(x = tSNE_1,y = tSNE_2,color = CC),size =1,shape = 20,alpha = Alapha)+labs(title = "Lactotrope_like cell") + scale_color_hue(name = "Cell_type",labels = c("Lactotrope","Others")) 
    394 pdf(file = paste0(dirout,"Stem_cell.pdf"),width = 9,height = 7)
    395 ggplot(umap_pos_frame, aes(x = UMAP_1,y = UMAP_2,color = Cell_type )) + geom_point(size =1,shape = 20,alpha =Alapha)+labs(title = "Stem_cell_like cell")+scale_colour_manual(values=c( "grey","red"))+theme(plot.title = element_text(hjust = 0.5))
    396 dev.off()
    397 
    398 
    399 #不同类别细胞分开画
    400 iden_cell = expr_filter_unknown@meta.data$CellType
    401 for(i in 1:length(iden_cell)){
    402   if(iden_cell[i]!="Thyrotrope") {
    403     iden_cell[i] = "Others"
    404   }
    405 }
    406 Cell_type = iden_cell
    407 #gg <- ggplot(data = tsne_pos_frame)+geom_point(mapping = aes(x = tSNE_1,y = tSNE_2,color = CC),size =1,shape = 20,alpha = Alapha)+labs(title = "Lactotrope_like cell") + scale_color_hue(name = "Cell_type",labels = c("Lactotrope","Others")) 
    408 pdf(file = paste0(dirout,"Thyrotrope.pdf"),width = 9,height = 7)
    409 ggplot(umap_pos_frame, aes(x = UMAP_1,y = UMAP_2,color = Cell_type)) + geom_point(size =1,shape = 20,alpha = Alapha)+labs(title = "Thyrotrope_like cell")+scale_colour_manual(values=c( "grey","red"))+theme(plot.title = element_text(hjust = 0.5))
    410 dev.off()
    411 
    412 #看一下两坨细胞来源是否分别是两个样本
    413 
    414 cell_source <-colnames(expr_filter_unknown)
    415 cell_type <- strsplit(cell_source,split = '_')
    416 ct <-rep(c('P1'), times = length(cell_source)) 
    417 for( i in 1:length(cell_source)){
    418   if(cell_type[[i]][1]=='P4'){
    419     ct[i]='P4'
    420   }
    421 }
    422 newident <- factor(ct)
    423 Idents(expr_filter_unknown) <- newident
    424 DimPlot(expr_filter_unknown,cols =c("#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#FF0000","#333333") )
    425 
    426 #统计一下,两中细胞来源的细胞的细胞类型比例
    427 
    428 sum1_S = 0
    429 sum1_L = 0
    430 sum4_S = 0
    431 sum4_L = 0
    432 
    433 for(i in 1:length(cell_source)){
    434   if(cell_type[[i]][1]=='P1' && Pred_data$V2[i]=='Somatotrope'){sum1_S = sum1_S + 1}
    435   else if(cell_type[[i]][1]=='P1' && Pred_data$V2[i]=='Lactotrope'){sum1_L = sum1_L + 1}
    436   else if(cell_type[[i]][1]=='P4' && Pred_data$V2[i]=='Lactotrope'){sum4_L = sum4_L + 1}
    437   else{sum4_S = sum4_S + 1}
    438 }
    439 
    440 #泌乳型的分的并不好,可能是去除了batch的原因,因为MNN的假设是不公的细胞类型相同
    441 #但因为P1和P4是不同的细胞类型,所以可以不用做MNN,可以用简单的回归,把表达量拉到同一尺度即可
    442 
    443 expr_1 <- readRDS("C:/Gu_lab/PA/result/pipline_results/P1_tumor/expr.RDS")
    444 expr_1 <- RenameCells(expr_1,add.cell.id = "P1_",for.merge = T )
    445 expr_4 <- readRDS("C:/Gu_lab/PA/result/pipline_results/P4_tumor/expr.RDS")
    446 expr_4 <- RenameCells(expr_4,add.cell.id = "P4_",for.merge = T )
    447 expr_1_4 <- merge(expr_1,expr_4)
    448 expr_1_4 <- FindVariableFeatures(expr_1_4)
    449 all.genes <- rownames(expr_1_4)
    450 expr_1_4 <- ScaleData(expr_1_4,features = all.genes)
    451 expr_1_4 <- RunPCA(expr_1_4,features = VariableFeatures(object = expr_1_4))
    452 ElbowPlot(expr_1_4)
    453 expr_1_4 <- FindNeighbors(expr_1_4,dims = 1:20)
    454 expr_1_4 <- FindClusters(expr_1_4,resolution = 0.5)
    455 expr_1_4 <- RunUMAP(expr_1_4, dims = 1:20)
    456 DimPlot(expr_1_4,reduction = "umap",cols =c("#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#FF0000","#000099","#660066","#333333") )
    457 cell_soruce <-rep(c('P','N'), times = c(10281,7007)) 
    458 newident_1 <- factor(cell_soruce)
    459 expr_1_4_save <- expr_1_4
    460 Idents(expr_1_4) <- newident_1
    461 #expr_nobatch_seurat@active.ident <- newident_1
    462 DimPlot(expr_1_4,reduction = "umap",cols =c("#F0E442", "#999999", "#D55E00", "#CC79A7","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73","#FF0000","#333333") )
    463 expr_1_4 <- expr_1_4_save
    464 outdir <- "C:/Gu_lab/PA/result/Pred_result/P1_P8_Tumor/"
    465 saveRDS(expr_1_4, file =paste0(outdir,"expr_all_P1_P8_new.RDS"))
    466 
    467 #feature plot
    468 outdir <- "C:/Gu_lab/PA/result/Pred_result/P1_P8_Tumor/with_batch/"
    469 pdf(file = paste0(outdir,"Somatotrope_feature.pdf"))
    470 Somatotrope_feature =  c("Pappa2","Ceacam10","Tcerg1l","Cabp2","Wnt10a","RP24-294M17.1","Mmp7","Ghrhr","Gh")
    471 Somatotrope_feature = toupper(Somatotrope_feature)
    472 VlnPlot(expr_1_4, features =Somatotrope_feature)
    473 FeaturePlot(expr_1_4,features = Somatotrope_feature)
    474 dev.off()
    475 
    476 pdf(file = paste0(outdir,"Lactotrope_feature.pdf"))
    477 Lactotrope_feature =  c("Prl","Agtr1a","Syndig1","Angpt1","Edil3","6030419C18Rik","Hepacam2","Cilp","Akr1c14")
    478 Lactotrope_feature = toupper(Lactotrope_feature)
    479 VlnPlot(expr_1_4, features =Lactotrope_feature)
    480 FeaturePlot(expr_1_4,features = Lactotrope_feature)
    481 dev.off()
    482 
    483 pdf(file = paste0(outdir,"Corticotrope_feature.pdf"))
    484 Corticotrope_feature =  c("Gpc5","Tnnt1","Tnni3","Gm15543","Cplx3","Egr4","Cdh8","Galnt9","Pomc")
    485 Corticotrope_feature = toupper(Corticotrope_feature)
    486 VlnPlot(expr_1_4, features =Corticotrope_feature)
    487 FeaturePlot(expr_1_4,features = Corticotrope_feature)
    488 dev.off()
    489 
    490 pdf(file = paste0(outdir,"Melanotrope_feature.pdf"))
    491 Melanotrope_feature = c("Oacyl","Esm1","Pkib","Gulo","Megf11","Rbfox3","Scn2a1","Pax7","Pcsk2")
    492 Melanotrope_feature = toupper(Melanotrope_feature)
    493 VlnPlot(expr_1_4, features =Melanotrope_feature)
    494 FeaturePlot(expr_1_4,features = Melanotrope_feature)
    495 dev.off()
    496 
    497 pdf(file = paste0(outdir,"Thyrotrope_feature.pdf"))
    498 Thyrotrope_feature = c("Tshb","Trhr","Dio2")
    499 Thyrotrope_feature = toupper(Thyrotrope_feature)
    500 VlnPlot(expr_1_4, features =Thyrotrope_feature)
    501 FeaturePlot(expr_1_4,features = Thyrotrope_feature)
    502 dev.off()
    503 
    504 pdf(file = paste0(outdir,"Stem_cell_feature.pdf"))
    505 Stem_cell_feature =  c("Cyp2f2","Lcn2","Mia","Cpxm2","Rbpms","Gm266","Cdh26","Aqp3","Aqp4")
    506 Stem_cell_feature = toupper(Stem_cell_feature)
    507 VlnPlot(expr_1_4, features =Stem_cell_feature)
    508 FeaturePlot(expr_1_4,features = Stem_cell_feature)
    509 dev.off()
    510 
    511 pdf(file = paste0(outdir,"Proliferatring_Pou1f1_feature.pdf"))
    512 Proliferatring_Pou1f1_feature = c("POU1f1","Pbk","Spc25","Ube2c","Hmmr","Ckap2l","Spc25","Cdca3","Birc5","Ccnb1")
    513 Proliferatring_Pou1f1_feature = toupper(Proliferatring_Pou1f1_feature)
    514 VlnPlot(expr_1_4, features =Proliferatring_Pou1f1_feature)
    515 FeaturePlot(expr_1_4,features = Proliferatring_Pou1f1_feature)
    516 dev.off()
    517 
    518 pdf(file = paste0(outdir,"T_B_NK_feature.pdf"))
    519 VlnPlot(expr_1_4,features = c("CD2","CD3D","CD3E","CD3G","CD4","CD8","CD45"))#T-cell Markers
    520 FeaturePlot(expr_1_4,features = c("CD2","CD3D","CD3E","CD3G","CD4","CD8","CD45"))
    521 VlnPlot(expr_1_4,features = c("PTPRC","CD79A","CD19","CD20","CD45"))#B-cell Markers
    522 FeaturePlot(expr_1_4,features = c("PTPRC","CD79A","CD19","CD20","CD45"))
    523 VlnPlot(expr_1_4,features = c("PTPRC","NKG7","CD56"))#NK-cell Markers
    524 FeaturePlot(expr_1_4,features = c("PTPRC","NKG7","CD56"))
    525 dev.off()
    526 pdf(file = paste0(outdir,"Macrophage-cell_feature.pdf"))
    527 VlnPlot(expr_1_4,features = c("CD14","CD163", "CD68", "CSF1R","CD33","HLA-DR","AIF1","FCER1G", "FCGR3A", "TYROBP"))#Macrophage-cell Markers
    528 FeaturePlot(expr_1_4,features = c("CD14","CD163", "CD68", "CSF1R","CD33","HLA-DR","AIF1","FCER1G", "FCGR3A", "TYROBP"))
    529 dev.off()
    530 pdf(file = paste0(outdir,"Fibroblasts-cell_feature.pdf"))
    531 VlnPlot(expr_1_4,features = c("ACTA2","FAP", "PDPN","COL1A2","DCN", "COL3A1", "COL6A1","S100A4","COL1A1","THY1"))#Fibroblasts-cell Markers
    532 dev.off()
    533 pdf(file = paste0(outdir,"Endothelial-cell_feature.pdf"))
    534 VlnPlot(expr_1_4,features = c("PLVAP","PECAM1","VWF","ENG","MCAM","CD146"))#Endothelial-cell Markers
    535 FeaturePlot(expr_1_4,features = c("PLVAP","PECAM1","VWF","ENG","MCAM","CD146"))
    536 dev.off()
    537 VlnPlot(expr_1_4,features = c("GH1","PRL","POU1F1"))
    538 
    539 #下面是为了去掉非垂体细胞:
    540 expr_1_4 <- SubsetData(expr_1_4,ident.use = c( '0','1','2','3','4','5','6','7'))
    541 pdf(file = paste0(outdir,"Dimplot_filter_cell.pdf"),width = 9,height = 7)
    542 DimPlot(expr_1_4,cols = c("#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#FF0000","#333333"))
    543 dev.off()
    544 saveRDS(expr_1_4,file = paste0(outdir,"expr_1_4_filter.RDS"))
    545 Gene_train <- read.table("C:/Gu_lab/PA/result/mouse_scaleFeatures_rf/Train_Gene_capital.txt",sep = "
    ",stringsAsFactors = F)
    546 Gene_train <- Gene_train[,1]
    547 Gene_train
    548 
    549 scale_data <- expr_1_4@assays$RNA@scale.data
    550 rownames(scale_data)
    551 var_gene_exp <- scale_data[which(rownames(scale_data) %in% Gene_train),]
    552 
    553 write.table(var_gene_exp,"C:/Gu_lab/PA/result/Pred_result/P1_P8_Tumor/exp_train_gene_scale_cells.txt",row.names = T,col.names = T, quote = F)
    554 
    555 #去掉垂体细胞以后看一下C('GH1','PRL','POU1F1','TSHB')四个基因的分布
    556 pdf(file = paste0(outdir,"GH1_PRL_POU1F1_TSHB.pdf"),width = 13,height = 9)
    557 VlnPlot(expr_1_4,features = c('GH1','PRL','POU1F1','TSHB'))#Endothelial-cell Markers
    558 dev.off()
    559 pdf(file = paste0(outdir,"GH1_PRL_POU1F1_TSHB_FeaturePlot.pdf"),width = 10,height = 9)
    560 FeaturePlot(expr_1_4,features = c('GH1','PRL','POU1F1','TSHB'))
    561 dev.off()
    562 
    563 
    564 #Plot 预测结果
    565 
    566 expr <- readRDS(file = paste0(outdir,"expr_1_4_filter.RDS"))
    567 Pred_data <- read.table('C:/Gu_lab/PA/result/Pred_result/P1_P8_tumor/Pred_results_scale_cell_resample.txt')
    568 newident <- Pred_data['V2'][[1]]
    569 newident <- factor(newident)
    570 Idents(expr) <- newident
    571 
    572 pdf(file = paste0(outdir,"Dimplot_Pred_results.pdf"),width = 9,height = 7)
    573 #去掉数目特别少的类
    574 DimPlot(expr,cols =c("#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#FF0000","#333333") )
    575 dev.off()
    576 #DimPlot(expr,cols =c("#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#FF0000","#333333") )
    577 Alapha = Pred_data['V3'][[1]]
    578 tsne_pos <- expr@reductions$tsne@cell.embeddings
    579 tsne_pos_frame <- data.frame(tsne_pos)
    580 col = c("#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73", "#F0E442",  "#CC79A7", "#0072B2", "#D55E00","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#FF0000","#333333")
    581 cid <- Pred_data['V4'][[1]]
    582 CC = col[cid+1]
    583 
    584 #去掉unknown
    585 expr_filter_unknown <- SubsetData(expr,ident.remove = "Unknown")
    586 DimPlot(expr_filter_unknown,cols =c("#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#FF0000","#333333") )
    587 
    588 expr_filter_unknown <- SubsetData(expr,ident.use = c("Lactotrope","Somatotrope"))
    589 DimPlot(expr_filter_unknown,reduction = "umap",cols =c("#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#FF0000","#000099","#660066","#333333") )
    590 
    591 expr_filter_unknown <- FindVariableFeatures(expr_filter_unknown)
    592 all.genes <- rownames(expr_filter_unknown)
    593 expr_filter_unknown <- ScaleData(expr_filter_unknown,features = all.genes)
    594 expr_filter_unknown <- RunPCA(expr_filter_unknown,features = VariableFeatures(object = expr_filter_unknown))
    595 ElbowPlot(expr_filter_unknown)
    596 #expr_filter_unknown <- FindNeighbors(expr_filter_unknown,dims = 1:20)
    597 #expr_filter_unknown <- FindClusters(expr_filter_unknown,resolution = 0.5)
    598 expr_filter_unknown <- RunUMAP(expr_filter_unknown, dims = 1:20)
    599 DimPlot(expr_filter_unknown,reduction = "umap",cols =c("#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#FF0000","#000099","#660066","#333333") )
    600 expr_filter_unknown_save <- expr_filter_unknown
    601 
    602 #看一下细胞来源
    603 #看一下两坨细胞来源是否分别是两个样本
    604 
    605 cell_source <-colnames(expr_filter_unknown)
    606 cell_type <- strsplit(cell_source,split = '_')
    607 ct <-rep(c('P1'), times = length(cell_source)) 
    608 for( i in 1:length(cell_source)){
    609   if(cell_type[[i]][1]=='P4'){
    610     ct[i]='P4'
    611   }
    612 }
    613 newident <- factor(ct)
    614 Idents(expr_filter_unknown) <- newident
    615 DimPlot(expr_filter_unknown,cols =c("#999999","#FF0099", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7","#990000","#9900cc","#66FF66","#663300","#0000FF","#CC0033","#FF0000","#333333") )
    616 
    617 #统计一下,两中细胞来源的细胞的细胞类型比例
    618 
    619 sum1_S = 0
    620 sum1_L = 0
    621 sum4_S = 0
    622 sum4_L = 0
    623 
    624 predresult <- expr_filter_unknown@active.ident
    625 
    626 for(i in 1:length(cell_type)){
    627   if(cell_type[[i]][1]=='P1' && predresult[i]=='Somatotrope'){sum1_S = sum1_S + 1}
    628   else if(cell_type[[i]][1]=='P1' && predresult[i]=='Lactotrope'){sum1_L = sum1_L + 1}
    629   else if(cell_type[[i]][1]=='P4' && predresult[i]=='Lactotrope'){sum4_L = sum4_L + 1}
    630   else{sum4_S = sum4_S + 1}
    631 }
    632 
    633 #看一下细胞的marker表达情况
    634 VlnPlot(expr_filter_unknown,features = c("GH1","PRL","TSHB","POU1F1"))#Endothelial-cell Markers
    635 FeaturePlot(expr_filter_unknown,features = c("GH1","PRL","TSHB","POU1F1"))
    636 
    637 
    638 
    639 
    640 pdf(file = paste0(outdir,"Somatotrope_feature.pdf"))
    641 Somatotrope_feature =  c("Pappa2","Ceacam10","Tcerg1l","Cabp2","Wnt10a","RP24-294M17.1","Mmp7","Ghrhr","Gh")
    642 Somatotrope_feature = toupper(Somatotrope_feature)
    643 VlnPlot(expr, features =Somatotrope_feature)
    644 FeaturePlot(expr,features = Somatotrope_feature)
    645 dev.off()
    646 
    647 pdf(file = paste0(outdir,"Lactotrope_feature.pdf"))
    648 Lactotrope_feature =  c("Prl","Agtr1a","Syndig1","Angpt1","Edil3","6030419C18Rik","Hepacam2","Cilp","Akr1c14")
    649 Lactotrope_feature = toupper(Lactotrope_feature)
    650 VlnPlot(expr, features =Lactotrope_feature)
    651 FeaturePlot(expr,features = Lactotrope_feature)
    652 dev.off()
    653 
    654 pdf(file = paste0(outdir,"Corticotrope_feature.pdf"))
    655 Corticotrope_feature =  c("Gpc5","Tnnt1","Tnni3","Gm15543","Cplx3","Egr4","Cdh8","Galnt9","Pomc")
    656 Corticotrope_feature = toupper(Corticotrope_feature)
    657 VlnPlot(expr, features =Corticotrope_feature)
    658 FeaturePlot(expr,features = Corticotrope_feature)
    659 dev.off()
    660 
    661 pdf(file = paste0(outdir,"Melanotrope_feature.pdf"))
    662 Melanotrope_feature = c("Oacyl","Esm1","Pkib","Gulo","Megf11","Rbfox3","Scn2a1","Pax7","Pcsk2")
    663 Melanotrope_feature = toupper(Melanotrope_feature)
    664 VlnPlot(expr, features =Melanotrope_feature)
    665 FeaturePlot(expr,features = Melanotrope_feature)
    666 dev.off()
    667 
    668 pdf(file = paste0(outdir,"Thyrotrope_feature.pdf"))
    669 Thyrotrope_feature = c("Tshb","Trhr","Dio2")
    670 Thyrotrope_feature = toupper(Thyrotrope_feature)
    671 VlnPlot(expr, features =Thyrotrope_feature)
    672 FeaturePlot(expr,features = Thyrotrope_feature)
    673 dev.off()
    674 
    675 pdf(file = paste0(outdir,"Stem_cell_feature.pdf"))
    676 Stem_cell_feature =  c("Cyp2f2","Lcn2","Mia","Cpxm2","Rbpms","Gm266","Cdh26","Aqp3","Aqp4")
    677 Stem_cell_feature = toupper(Stem_cell_feature)
    678 VlnPlot(expr, features =Stem_cell_feature)
    679 FeaturePlot(expr,features = Stem_cell_feature)
    680 dev.off()
    681 
    682 pdf(file = paste0(outdir,"Proliferatring_Pou1f1_feature.pdf"))
    683 Proliferatring_Pou1f1_feature = c("POU1f1","Pbk","Spc25","Ube2c","Hmmr","Ckap2l","Spc25","Cdca3","Birc5","Ccnb1")
    684 Proliferatring_Pou1f1_feature = toupper(Proliferatring_Pou1f1_feature)
    685 VlnPlot(expr, features =Proliferatring_Pou1f1_feature)
    686 FeaturePlot(expr,features = Proliferatring_Pou1f1_feature)
    687 dev.off()
    688 
    689 pdf(file = paste0(outdir,"T_B_NK_feature.pdf"))
    690 VlnPlot(expr,features = c("CD2","CD3D","CD3E","CD3G","CD4","CD8","CD45"))#T-cell Markers
    691 FeaturePlot(expr,features = c("CD2","CD3D","CD3E","CD3G","CD4","CD8","CD45"))
    692 VlnPlot(expr,features = c("PTPRC","CD79A","CD19","CD20","CD45"))#B-cell Markers
    693 FeaturePlot(expr,features = c("PTPRC","CD79A","CD19","CD20","CD45"))
    694 VlnPlot(expr,features = c("PTPRC","NKG7","CD56"))#NK-cell Markers
    695 FeaturePlot(expr,features = c("PTPRC","NKG7","CD56"))
    696 dev.off()
    697 pdf(file = paste0(outdir,"Macrophage-cell_feature.pdf"))
    698 VlnPlot(expr,features = c("CD14","CD163", "CD68", "CSF1R","CD33","HLA-DR","AIF1","FCER1G", "FCGR3A", "TYROBP"))#Macrophage-cell Markers
    699 FeaturePlot(expr,features = c("CD14","CD163", "CD68", "CSF1R","CD33","HLA-DR","AIF1","FCER1G", "FCGR3A", "TYROBP"))
    700 dev.off()
    701 pdf(file = paste0(outdir,"Fibroblasts-cell_feature.pdf"))
    702 VlnPlot(expr,features = c("ACTA2","FAP", "PDPN","COL1A2","DCN", "COL3A1", "COL6A1","S100A4","COL1A1","THY1"))#Fibroblasts-cell Markers
    703 dev.off()
    704 pdf(file = paste0(outdir,"Endothelial-cell_feature.pdf"))
    705 VlnPlot(expr,features = c("PLVAP","PECAM1","VWF","ENG","MCAM","CD146"))#Endothelial-cell Markers
    706 FeaturePlot(expr,features = c("PLVAP","PECAM1","VWF","ENG","MCAM","CD146"))
    707 dev.off()
    708 VlnPlot(expr,features = c("GH1","CHGA","SLPI"))
    709 VlnPlot(expr,features = c("GH1","CHGA","SLPI"))
    710 VlnPlot(expr,features = c("GH"))
  • 相关阅读:
    NPM使用技巧
    重构老项目所悟
    Angular2开发笔记
    nodejs项目mysql使用sequelize支持存储emoji
    [原创]django+ldap+memcache实现单点登录+统一认证
    [原创]django+ldap实现单点登录(装饰器和缓存)
    [原创]django+ldap实现统一认证部分二(python-ldap实践)
    [原创]django+ldap实现统一认证部分一(django-auth-ldap实践)
    ldap部署相关,ldap双机LAM配置管理ldap备份还原
    通过pycharm使用git[图文详解]
  • 原文地址:https://www.cnblogs.com/shanyr/p/11683505.html
Copyright © 2011-2022 走看看