zoukankan      html  css  js  c++  java
  • You can Solve a Geometry Problem too(线段求交)

    http://acm.hdu.edu.cn/showproblem.php?pid=1086

    You can Solve a Geometry Problem too

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 8861    Accepted Submission(s): 4317


    Problem Description
    Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
    Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

    Note:
    You can assume that two segments would not intersect at more than one point. 
     
    Input
    Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending. 
    A test case starting with 0 terminates the input and this test case is not to be processed.
     
    Output
    For each case, print the number of intersections, and one line one case.
     
    Sample Input
    2 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 3 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.000 0.00 0.00 1.00 0.00 0
     
    题解:本题题干已经排除了两线重合的多边交于一点的情况,故直接枚举所有的边是否相交即可
     1 #include<cstdio>
     2 #include<cmath>
     3 using namespace std;
     4 #define eps 1e-6
     5 #define N 105
     6 struct point{
     7     double x , y ;
     8     point(double x_, double y_){
     9          x = x_;
    10          y = y_;
    11     }
    12     point(){}
    13     point operator - (const point a) const
    14     {
    15         return point(x-a.x,y-a.y);
    16     }
    17     double operator * (const point a) const
    18     {
    19         return x*a.y - a.x*y;
    20     }
    21 };
    22 
    23 struct line{
    24     point s , t;
    25 }L[N];
    26 
    27 int main()
    28 {
    29     int T;
    30     while(~scanf("%d",&T),T)
    31     {
    32         for(int i = 0 ;i < T ; i++)
    33         {
    34             scanf("%lf%lf%lf%lf",&L[i].s.x,&L[i].s.y,&L[i].t.x,&L[i].t.y);
    35         }
    36         int ans = 0;
    37         for(int i = 0 ; i < T ; i++)
    38         {
    39             for(int j = i+1 ; j < T ; j++)//j从i开始保证不会重复判断
    40             {
    41                // if(i==j) continue;
    42                 point A = L[i].s;
    43                 point B = L[i].t;
    44                 point C = L[j].s;
    45                 point D = L[j].t;
    46                 if((((D-C)*(A-C))*((D-C)*(B-C)))>eps) {continue;}
    47                 if((((D-A)*(B-A))*((C-A)*(B-A)))>eps) {continue;}
    48                     ans++;
    49             }
    50         }
    51         printf("%d
    ",ans);
    52     }
    53     return 0;
    54 }

    也可以把他们写成函数在外面

     1 #include <cstdio>
     2 #include <cmath>
     3 using namespace std;
     4 #define eps 1e-8
     5 #define N 105
     6 struct point{
     7     double x, y;
     8     point(){}
     9     point(double _x, double _y) {
    10         x = _x, y = _y;
    11     }
    12     
    13     point operator - (point a){
    14         return point(x-a.x, y-a.y);
    15     }
    16     
    17     double operator * (point a){
    18         return x*a.y - y*a.x;
    19     }
    20 };
    21 
    22 struct line{
    23     point s, t;
    24 }L[N];
    25 
    26 bool ck(line a, line b)
    27 {
    28     point A = a.s, B = a.t, C = b.s, D = b.t;
    29     if(((C-A)*(B-A)) *((D-A)*(B-A)) > eps) return false;
    30     if(((A-C)*(D-C)) *((B-C)*(D-C)) > eps) return false;
    31     return true;
    32 }
    33 
    34 int main()
    35 {
    36     int n;
    37     while(~scanf("%d", &n), n)
    38     {
    39         for(int i = 0; i < n; i++)
    40             scanf("%lf %lf %lf %lf", &L[i].s.x, &L[i].s.y, &L[i].t.x, &L[i].t.y);
    41         int cnt = 0;
    42         for(int i = 0; i < n; i++)
    43             for(int j = i+1; j < n; j++)
    44                 cnt += ck(L[i], L[j]);
    45         printf("%d
    ", cnt);
    46     }
    47 }
  • 相关阅读:
    Effective Java(二)—— 循环与 StringBuilder
    Java 错误:找不到或无法加载主类(源文件中含有包名 package)
    古代文学经典、现代文学经典
    逻辑一致、交叉验证
    框架设计的一些思考
    Ping
    Hypver-V中的快照
    事件日志订阅-基于 源已启动
    组策略--下发计划任务到计算机
    组策略--下发文件到计算机
  • 原文地址:https://www.cnblogs.com/shanyr/p/4687256.html
Copyright © 2011-2022 走看看