题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1331
Function Run Fun
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3459 Accepted Submission(s): 1707
Problem Description
We all love recursion! Don't we?
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
Input
The input for your program will be a series of integer triples, one per line, until the end-of-file flag of -1 -1 -1. Using the above technique, you are to calculate w(a, b, c) efficiently and print the result.
Output
Print the value for w(a,b,c) for each triple.
Sample Input
1 1 1
2 2 2
10 4 6
50 50 50
-1 7 18
-1 -1 -1
Sample Output
w(1, 1, 1) = 2
w(2, 2, 2) = 4
w(10, 4, 6) = 523
w(50, 50, 50) = 1048576
w(-1, 7, 18) = 1
dp学习~2
动态规划的两种使用动机:
•自底向上的递推。
•利用递归时产生大量重叠子问题,进行记忆化求解。
其中记忆化搜索:
•形式上是搜索,但是把搜索到的一些解用动态规划的思想和模式保存下来。
•特点:
•1.一般来说dp总是需要遍历所有状态,搜索却不需要。
•2.搜索可以剪枝,可能还会剪去大量不必要状态。
•3.可能会比较容易编写,且效率不错。
这个题在使用递归函数的时候很明显会重复计算很多的状态,所以这里用记忆化搜索,思想就是算过的状态直接返回即可
特别注意一个问题就是,在算出一个问题的解以后一定要赋值给对应的dp[i][j][k];——更新dp数组
代码;
1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 using namespace std; 5 const int N = 21; 6 int dp[N][N][N]; 7 8 void init() 9 { 10 memset(dp,-1,sizeof(dp)); 11 for(int i = 0; i <= 21; i++) 12 { 13 for(int j = 0; j <=21; j++) 14 { 15 dp[0][i][j] = dp[i][j][0] = dp[i][0][j] = 1; 16 } 17 } 18 } 19 int w(int a, int b, int c) 20 { 21 if(dp[a][b][c]!=-1) return dp[a][b][c]; 22 if(a<b&&b<c){ 23 return dp[a][b][c] = w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c); 24 } 25 else return dp[a][b][c] = w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1); 26 } 27 int main() 28 { 29 init(); 30 int a, b, c; 31 while(~scanf("%d%d%d",&a,&b,&c)) 32 { 33 //printf("w = %d ",w(20,20,20)); 34 if(a==-1&&b==-1&&c==-1) return 0; 35 else if(a<=0||b<=0||c<=0) printf("w(%d, %d, %d) = 1 ",a,b,c); 36 else if(a>20||b>20||c>20) printf("w(%d, %d, %d) = %d ",a,b,c,w(20,20,20)); 37 else printf("w(%d, %d, %d) = %d ",a,b,c,w(a,b,c)); 38 } 39 return 0; 40 }