zoukankan      html  css  js  c++  java
  • 记忆化搜索 dp学习~2

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1331

    Function Run Fun

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 3459    Accepted Submission(s): 1707


    Problem Description
    We all love recursion! Don't we?

    Consider a three-parameter recursive function w(a, b, c):

    if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
    1

    if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
    w(20, 20, 20)

    if a < b and b < c, then w(a, b, c) returns:
    w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)

    otherwise it returns:
    w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)

    This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
     


    Input
    The input for your program will be a series of integer triples, one per line, until the end-of-file flag of -1 -1 -1. Using the above technique, you are to calculate w(a, b, c) efficiently and print the result.
     


    Output
    Print the value for w(a,b,c) for each triple.
     


    Sample Input
    1 1 1 2 2 2 10 4 6 50 50 50 -1 7 18 -1 -1 -1
     


    Sample Output
    w(1, 1, 1) = 2 w(2, 2, 2) = 4 w(10, 4, 6) = 523 w(50, 50, 50) = 1048576 w(-1, 7, 18) = 1
    dp学习~2
    动态规划的两种使用动机:
    •自底向上的递推。
    •利用递归时产生大量重叠子问题,进行记忆化求解。
    其中记忆化搜索:
    •形式上是搜索,但是把搜索到的一些解用动态规划的思想和模式保存下来。
    •特点:
    •1.一般来说dp总是需要遍历所有状态,搜索却不需要。
    •2.搜索可以剪枝,可能还会剪去大量不必要状态。
    •3.可能会比较容易编写,且效率不错。
    这个题在使用递归函数的时候很明显会重复计算很多的状态,所以这里用记忆化搜索,思想就是算过的状态直接返回即可
    特别注意一个问题就是,在算出一个问题的解以后一定要赋值给对应的dp[i][j][k];——更新dp数组
    代码;
     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 using namespace std;
     5 const int N = 21;
     6 int dp[N][N][N];
     7 
     8 void init()
     9 {
    10     memset(dp,-1,sizeof(dp));
    11     for(int i = 0; i <= 21; i++)
    12     {
    13         for(int j = 0; j <=21; j++)
    14         {
    15             dp[0][i][j] = dp[i][j][0] = dp[i][0][j] = 1;
    16         }
    17     }
    18 }
    19 int w(int a, int b, int c)
    20 {
    21     if(dp[a][b][c]!=-1) return dp[a][b][c];
    22     if(a<b&&b<c){
    23         return dp[a][b][c] = w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c);
    24     }
    25     else return dp[a][b][c] = w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1);
    26 }
    27 int main()
    28 {
    29     init();
    30     int a, b, c;
    31     while(~scanf("%d%d%d",&a,&b,&c))
    32     {
    33         //printf("w = %d
    ",w(20,20,20));
    34         if(a==-1&&b==-1&&c==-1) return 0;
    35         else if(a<=0||b<=0||c<=0) printf("w(%d, %d, %d) = 1
    ",a,b,c);
    36         else if(a>20||b>20||c>20) printf("w(%d, %d, %d) = %d
    ",a,b,c,w(20,20,20));
    37         else printf("w(%d, %d, %d) = %d
    ",a,b,c,w(a,b,c));
    38     }
    39     return 0;
    40 }
  • 相关阅读:
    (转)typedef用法
    (转)在用户空间发生中断时,上下文切换的过程
    (转)内核中断,异常,抢占总结篇
    (转)中断上下文和进程上下文的区别
    (转)C中的volatile用法
    (转)gcc学习笔记
    (转)C系程序员面试必知必会之大端小端
    (转)我在北京工作这几年 – 一个软件工程师的反省
    (转)忠告
    Linux下VLAN功能的实现 (转)
  • 原文地址:https://www.cnblogs.com/shanyr/p/5228681.html
Copyright © 2011-2022 走看看