zoukankan      html  css  js  c++  java
  • C# JackLib系列之如何获取地球上两经纬度坐标点间的距离

    获取地球上两经纬度坐标点间的距离,利用【大圆距离公式】

     

    A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v, are also depicted.

    谷歌都在用呢, C#实现的代码如下:

     /// <summary>
    /// 地球半径
    /// </summary>
    private const double EARTH_RADIUS = 6378.137;
    ///
    <summary> /// 获取两点之间的距离,大圆距离公式 /// </summary> /// <param name="lat1"></param> /// <param name="lon1"></param> /// <param name="lat2"></param> /// <param name="lon2"></param> /// <returns></returns> public static double DistanceOfEarthTwoPoints(double latA, double lngA, double latB, double lngB) {
    double radLat1 = lat1 * Math.PI / 180.0;
         double radLat2 = lat2 * Math.PI / 180.0;
         double a = radLat1 - radLat2;
         double b = lon1 * Math.PI / 180.0 - lon2 * Math.PI / 180.0;
         double s = 2 * Math.Asin(Math.Sqrt(Math.Pow(Math.Sin(a / 2), 2) + Math.Cos(radLat1) * Math.Cos(radLat2) * Math.Pow(Math.Sin(b / 2), 2)));
         s = s * EARTH_RADIUS;
         s = Math.Round(s * 1000000) / 1000000;
         return s; }

    当然还有另一种写法:

    /// <summary>
    /// 获取两点之间的距离,大圆距离公式
    /// </summary>
    /// <param name="lat1"></param>
    /// <param name="lon1"></param>
    /// <param name="lat2"></param>
    /// <param name="lon2"></param>
    /// <returns></returns>
    public static double DistanceOfEarthTwoPoints(double latA, double lngA, double latB, double lngB) {
       double s = Math.Acos(Math.Cos(Rad(latA)) * Math.Cos(Rad(latB)) * (Math.Cos(Rad(lngA) - Rad(lngB))) + Math.Sin(Rad(latA)) * Math.Sin(Rad(latB)));
       s = s * EARTH_RADIUS;
       s = Math.Round(s * 1000000) / 1000000;
       return s;
    }

    其实这两个方法是完全等价的,只是化简程序不同而已,看看下面的解释:

    Formulas

     
    An illustration of the central angle, Δσ, between two points, P and Q. λ and φ are the longitudinal and latitudinal angles of P respectively

    Let phi_1,lambda_1 and phi_2,lambda_2 be the geographical latitude and longitude of two points 1 and 2, and Deltaphi,Deltalambda their absolute differences; then Deltasigma, the central angle between them, is given by the spherical law of cosines:

    Deltasigma=arccosigl(sinphi_1cdotsinphi_2+cosphi_1cdotcosphi_2cdotcos(Deltalambda)igr).

    The distance d, i.e. the arc length, for a sphere of radius r and Deltasigma given in radians

    d = r \, Deltasigma.

    Computational formulas

    On computer systems with low floating-point precision, the spherical law of cosines formula can have large rounding errors if the distance is small (if the two points are a kilometer apart on the surface of the Earth, the cosine of the central angle comes out 0.99999999). For modern 64-bit floating-point numbers, the spherical law of cosines formula, given above, does not have serious rounding errors for distances larger than a few meters on the surface of the Earth.[2] The haversine formula is numerically better-conditioned for small distances:[3]

    Deltasigma
=2arcsin sqrt{sin^2left(frac{Deltaphi}{2}
ight)+cos{phi_1}cdotcos{phi_2}cdotsin^2left(frac{Deltalambda}{2}
ight)} .;!

    Historically, the use of this formula was simplified by the availability of tables for the haversine function: hav(θ) = sin2(θ/2).

    Although this formula is accurate for most distances on a sphere, it too suffers from rounding errors for the special (and somewhat unusual) case of antipodal points (on opposite ends of the sphere). A more complicated formula that is accurate for all distances is the following special case of the Vincenty formula for an ellipsoid with equal major and minor axes:[4]

    Deltasigma=arctan frac{sqrt{left(cosphi_2cdotsin(Deltalambda)
ight)^2+left(cosphi_1cdotsinphi_2-sinphi_1cdotcosphi_2cdotcos(Deltalambda)
ight)^2}}{sinphi_1cdotsinphi_2+cosphi_1cdotcosphi_2cdotcos(Deltalambda)} .

    When programming a computer, one should use the atan2() function rather than the ordinary arctangent function (atan()), so that Deltasigma is placed in the correct quadrant.

    The determination of the great-circle distance is just part of the more general problem of great-circle navigation, which also computes the azimuths at the end points and intermediate way-points.

  • 相关阅读:
    最近比较忙
    堆栈的实现
    推荐一款开源优秀Javascript编辑器Aptana Studio
    OOJ面向对象编程的三大特点封装,继承,多态分析与实例
    ASP.NET设计模式之单体模式Singleton
    OOJ面向对象的JAVASCRIPT(一)
    【转】性能优化关于Asp.net性能的技巧
    性能优化关于JQuery的性能优化
    学习javascript的动态this指针与动态绑定 call与apply函数的应用
    OOJ面向对象的JAVASCRIPT(二)
  • 原文地址:https://www.cnblogs.com/shaozhuyong/p/5460602.html
Copyright © 2011-2022 走看看