zoukankan      html  css  js  c++  java
  • java方式实现堆排序

    一、堆排序和堆相关概念描述

      堆排序是指利用这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆的性质:即子结点的值总是小于(或者大于)它的父节点,若子结点的值总是小于它的父节点这堆叫大顶堆,子结点的值总是大于它的父节点这种堆叫小顶堆。若二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。如果完全二叉树有n个节点,那么有n/2(n为偶数)个叶子节点或(n+1)/2(n为奇数)个叶子节点。

    二、基本思想

      先将数组array[0,...,n-1]构造成一个堆,即将array[0,...,n-1]看成是一颗完全二叉树的顺序存储结构。然后将堆调整为大顶堆(顺序排序),具体步骤如下,先找到堆的非叶子节点array[i](当n为偶数时(n-1)/2<=i<=n-1,当n为奇数时(n-2)/2<=i<=n-1),再找到这个非叶子节点的左右孩子节点(array[2i+1],array[2i+2]),将非叶子节点的值与左右孩子节点的值比较,如果非叶子节点的值小于左右孩子节点值的最大值,把最大孩子节点的最大值赋给非叶子节点,再继续找孩子节点的孩子节点,重复上述比较操作,直到找不到孩子节点为直,当所有非叶子节点重复上述操作完成时,那么这个堆就是大顶堆了。然后将堆顶元素与堆尾元素交换,将堆尾元素移除,将剩余元素组成的堆继续重复调整为大堆,交换堆顶堆尾元素,移除堆尾元素,直到剩余元素组成的堆只有一个元素为止。

    三、实现步骤

    1. 构建初始堆,将待排序列构成一个大顶堆(或者小顶堆),升序大顶堆,降序小顶堆;
    2. 将堆顶元素与堆尾元素交换,移除堆尾元素。
    3. 重新构建大顶堆。
    4. 重复2~3,直到待排序列中只剩下一个元素(堆顶元素)。

    四、案例分析

       以数组{6,5,3,1,8,7}为例如下图:

      

     

    五、代码实现

    public class JavaSort {
        public static void main(String[] args) {
            int a [] =new int []{6,5,3,1,8,7};
            System.out.println("排序前的数组:"+Arrays.toString(a));
            heapSort(a);
            System.out.println("排序后的数组:"+Arrays.toString(a));
        }
        
    
        
    
            /**
             * 
             * @param ary 待排序列
             */
            private static void heapSort(int[] ary) {
                int len=ary.length;
                if (len<=0) {
                    System.out.println("数组长度不能小于等于0");
                } else if (len==1) {
                }  else {
                    int firstIndex=len-1;
                    if(len%2==0) {
                        firstIndex=len-2;//第一个非叶子节点位置,如果数组长度为偶数,非叶子节点为length-2/2,否则叶子长度为length-1/2.
                    } 
                     for (int i = firstIndex / 2; i >= 0; i--) {
                         //从第一个非叶子结点从下至上,从右至左调整结构,把堆调整为大顶堆。
                         adjustHeap(ary, i, ary.length);
                     }
                    System.out.println("第一次构造的大顶堆"+Arrays.toString(ary));
    
                     //调整堆结构+交换堆顶元素与末尾元素
                     for (int i = ary.length - 1; i > 0; i--) {
                         //将堆顶元素与末尾元素进行交换
                         int temp = ary[i];
                         ary[i] = ary[0];
                         ary[0] = temp;
                         //将数组长度-1,移除堆尾元素,将堆顶元素进行调整,就可以将堆调整为大顶堆
                         System.out.println("要移除的堆尾元素:"+ary[i]);
                         System.out.println("移除堆尾元素后,堆为"+Arrays.toString(Arrays.copyOfRange(ary, 0, i)));
                         adjustHeap(ary, 0, i);
                         System.out.println("移除堆尾元素后,大顶堆堆为"+Arrays.toString(Arrays.copyOfRange(ary, 0, i)));
    
                     }
                     
                }
                
                
               
            }
    
            /**
             * 调整完全二叉树的非叶子节点,使得它们的节点值大于左右孩子节点的值,左右孩子重复上述操作,直到找不到孩子节点。
             * @param ary 要调整的数组
             * @param parent 要调整的节点
             * @param length 要调整的数组长度
             */
            private static void adjustHeap(int[] ary, int parent, int length) {
                //将temp作为父节点
                int temp = ary[parent];
                //左孩子
                int lChild = 2 * parent + 1;
    
                while (lChild < length) {
                    //右孩子
                    int rChild = lChild + 1;
                    // 如果有右孩子结点,并且右孩子结点的值大于左孩子结点,则选取右孩子结点
                    if (rChild < length && ary[lChild] < ary[rChild]) {
                        lChild++;
                    }
    
                    // 如果父结点的值已经大于孩子结点的值,则直接结束
                    if (temp >= ary[lChild]) {
                        break;
                    }
    
                    // 把孩子结点的值赋给父结点
                    ary[parent] = ary[lChild];
    
                    //选取孩子结点的左孩子结点,继续向下找
                    parent = lChild;
                    lChild = 2 * lChild + 1;
                }
                ary[parent] = temp;
                
            }
        
    }

    五、运行结果

    六、运行结果

      空间复杂度:o(1)。

      时间复杂度:建堆:o(n),每次调整o(log n),故最好、最坏、平均情况下:o(n*logn)。

      稳定性:不稳定。

  • 相关阅读:
    [mysql]增加域设置 auto_increment
    【mysql乱码】解决php中向mysql插入中文数据乱码的问题
    WIN7 嵌入式系统安装教程 Windows Embedded Standard 2011 安装
    STM32F4 串口实验中收不到超级终端发送的数据,调试工具却可以
    STM32F4 输入输出(GPIO)模式理解
    STM32——GPIO之从库函数到寄存器的前因后果
    STM32 下的库函数和寄存器操作比较
    JLINK(SEGGER)灯不亮 USB不识别固件修复、clone修改
    lwip Light Weight (轻型)IP协议
    stm32开发之串口的调试
  • 原文地址:https://www.cnblogs.com/shareAndStudy/p/12489490.html
Copyright © 2011-2022 走看看