zoukankan      html  css  js  c++  java
  • IO模型之二-linux网络IO模式select,poll,epoll

    1、概述

     select,poll,epoll都是IO多路复用的机制。I/O多路复用就是通过一种机制,一个进程可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。但select,poll,epoll本质上都是同步I/O,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的;

    2、select

     select 的方法原型,int select (int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout); select 函数监视的文件描述符分3类,分别是writefds、readfds、和exceptfds。调用后select函数会阻塞,直到有描述符就绪(有数据 可读、可写、或者有except),或者超时(timeout指定等待时间,如果立即返回设为null即可),函数返回。当select函数返回后,可以 通过遍历fdset,来找到就绪的描述符。select目前几乎在所有的平台上支持,其良好跨平台支持也是它的一个优点。select的一个缺点在于单个进程能够监视的文件描述符的数量存在最大限制,在Linux上一般为1024,可以通过修改宏定义甚至重新编译内核的方式提升这一限制,但 是这样也会造成效率的降低。

    使用方法总共分三步:

    1.三个fd_set初始化,用FD_ZERO FD_SET
    2.调用select
    3.用fd遍历每一个fd_set使用FD_ISSET。如果成功就处理。

    3、poll

         poll 方法原型 int poll (struct pollfd *fds, unsigned int nfds, int timeout);不同与select使用三个位图来表示三个fdset的方式,poll使用一个 pollfd的指针实现。pollfd结构包含了要监视的event和发生的event,不再使用select“参数-值”传递的方式。同时,pollfd并没有最大数量限制(但是数量过大后性能也是会下降)。 和select函数一样,poll返回后,需要轮询pollfd来获取就绪的描述符。

                                              struct pollfd {
                                                  int fd; /* file descriptor */
                                                  short events; /* requested events to watch */
                                                  short revents; /* returned events witnessed */
                                              };

        从上面看,select和poll都需要在返回后,通过遍历文件描述符来获取已经就绪的socket。事实上,同时连接的大量客户端在一时刻可能只有很少的处于就绪状态,因此随着监视的描述符数量的增长,其效率也会线性下降。

    使用方法总共分三步:
    1.pollfd初始化,绑定sock,设置事件event,revent。设置时间限制。
    2.调用poll
    3.遍历看他的事件发生了么,如果发生了置0。

    4、epoll

     4.1相对于select和poll来说,epoll更加灵活,没有描述符限制。epoll使用一个文件描述符管理多个描述符,将用户关系的文件描述符的事件存放到内核的一个事件表中,这样在用户空间和内核空间的copy只需一次。epoll是直接在内核里的,用户调用系统调用去注册,因此省去了每次的复制和轮询的消耗。这儿用了三个系统调用,epollcreate只要每次调用开始调用一次创造一个epoll就可以了。然后用epoll_ctl来进行添加事件,其实就是注册到内核管理的epoll里。然后直接epoll_wait就可以了。系统会返回系统调用的。

    4.1.1使用方法

    1.准备工作多了,很复杂,这个记录数据在内核里。
    1)构建epoll描述符,通过调用epoll_create
    2)用需要的时间和上下文数据指针初始化。
    3)调用epoll_ctl 添加文件描述符。
    4)调用epoll_wait每次处理20个事件。这儿是接收一个空数组,然后填上东西。也就是有200个东西过来,我可能只填了一个。当然如果50个完成了也是回复20.剩下的不会被漏掉,下次再来处理。
    5)遍历返回的数据。注意这儿返回的都是有用的东西。

    4.2、 epoll操作过程

    epoll操作过程需要三个接口,分别如下:

    int epoll_create(int size);//创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大
    int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
    int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);

    4.2.1. int epoll_create(int size);
    创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大,这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值,参数size并不是限制了epoll所能监听的描述符最大个数,只是对内核初始分配内部数据结构的一个建议
    当创建好epoll句柄后,它就会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。

    4.2.2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
    函数是对指定描述符fd执行op操作。
    - epfd:是epoll_create()的返回值。
    - op:表示op操作,用三个宏来表示:添加EPOLL_CTL_ADD,删除EPOLL_CTL_DEL,修改EPOLL_CTL_MOD。分别添加、删除和修改对fd的监听事件。
    - fd:是需要监听的fd(文件描述符)
    - epoll_event:是告诉内核需要监听什么事,struct epoll_event结构如下:

    struct epoll_event {
      __uint32_t events;  /* Epoll events */
      epoll_data_t data;  /* User data variable */
    };
    3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
    等待epfd上的io事件,最多返回maxevents个事件。
    参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。
    该函数返回需要处理的事件数目,如返回0表示已超时。

    4.2.3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
    等待epfd上的io事件,最多返回maxevents个事件。
    参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。

    4.3.工作模式

     epoll对文件描述符的操作有两种模式:LT(level trigger)ET(edge trigger)。LT模式是默认模式,LT模式与ET模式的区别如下:
      LT模式:当epoll_wait检测到描述符事件发生并将此事件通知应用程序,应用程序可以不立即处理该事件。下次调用epoll_wait时,会再次响应应用程序并通知此事件。
      ET模式:当epoll_wait检测到描述符事件发生并将此事件通知应用程序,应用程序必须立即处理该事件。如果不处理,下次调用epoll_wait时,不会再次响应应用程序并通知此事件。

    4.3.1、 LT模式

    LT(level triggered)是缺省的工作方式,并且同时支持block和no-block socket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的。

    4.3.2、 ET模式

    ET(edge-triggered)是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once)

    ET模式在很大程度上减少了epoll事件被重复触发的次数,因此效率要比LT模式高。epoll工作在ET模式的时候,必须使用非阻塞套接口,以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。

    4.4epoll总结

    在 select/poll中,进程只有在调用一定的方法后,内核才对所有监视的文件描述符进行扫描,而epoll事先通过epoll_ctl()来注册一 个文件描述符,一旦基于某个文件描述符就绪时,内核会采用类似callback的回调机制,迅速激活这个文件描述符,当进程调用epoll_wait() 时便得到通知。(此处去掉了遍历文件描述符,而是通过监听回调的的机制。这正是epoll的魅力所在。)

    epoll的优点主要是一下几个方面:

    1.  监视的描述符数量不受限制,它所支持的FD上限是最大可以打开文件的数目,这个数字一般远大于2048,举个例子,在1GB内存的机器上大约是10万左 右,具体数目可以cat /proc/sys/fs/file-max察看,一般来说这个数目和系统内存关系很大。select的最大缺点就是进程打开的fd是有数量限制的。这对 于连接数量比较大的服务器来说根本不能满足。虽然也可以选择多进程的解决方案( Apache就是这样实现的),不过虽然linux上面创建进程的代价比较小,但仍旧是不可忽视的,加上进程间数据同步远比不上线程间同步的高效,所以也不是一种完美的方案。
    2. IO的效率不会随着监视fd的数量的增长而下降。epoll不同于select和poll轮询的方式,而是通过每个fd定义的回调函数来实现的。只有就绪的fd才会执行回调函数。
    3. 如果没有大量的idle -connection或者dead-connection,epoll的效率并不会比select/poll高很多,但是当遇到大量的idle- connection,就会发现epoll的效率大大高于select/poll。

    5 epoll IO多路复用模型实现机制

    由于epoll的实现机制与select/poll机制完全不同,上面所说的 select的缺点在epoll上不复存在。

    设想一下如下场景:有100万个客户端同时与一个服务器进程保持着TCP连接。而每一时刻,通常只有几百上千个TCP连接是活跃的(事实上大部分场景都是这种情况)。如何实现这样的高并发?

    在select/poll时代,服务器进程每次都把这100万个连接告诉操作系统(从用户态复制句柄数据结构到内核态),让操作系统内核去查询这些套接字上是否有事件发生,轮询完后,再将句柄数据复制到用户态,让服务器应用程序轮询处理已发生的网络事件,这一过程资源消耗较大,因此,select/poll一般只能处理几千的并发连接。

    epoll的设计和实现与select完全不同。epoll通过在Linux内核中申请一个简易的文件系统(文件系统一般用什么数据结构实现?B+树)。把原先的select/poll调用分成了3个部分:

    1)调用epoll_create()建立一个epoll对象(在epoll文件系统中为这个句柄对象分配资源)

    2)调用epoll_ctl向epoll对象中添加这100万个连接的套接字

    3)调用epoll_wait收集发生的事件的连接

    如此一来,要实现上面说是的场景,只需要在进程启动时建立一个epoll对象,然后在需要的时候向这个epoll对象中添加或者删除连接。同时,epoll_wait的效率也非常高,因为调用epoll_wait时,并没有一股脑的向操作系统复制这100万个连接的句柄数据,内核也不需要去遍历全部的连接。

    下面来看看Linux内核具体的epoll机制实现思路

    当某一进程调用epoll_create方法时,Linux内核会创建一个eventpoll结构体,这个结构体中有两个成员与epoll的使用方式密切相关。eventpoll结构体如下所示:

    复制代码
    struct eventpoll{  
        ....  
        /*红黑树的根节点,这颗树中存储着所有添加到epoll中的需要监控的事件*/  
        struct rb_root  rbr;  
        /*双链表中则存放着将要通过epoll_wait返回给用户的满足条件的事件*/  
        struct list_head rdlist;  
        ....  
    };  
    复制代码

    每一个epoll对象都有一个独立的eventpoll结构体,用于存放通过epoll_ctl方法向epoll对象中添加进来的事件。这些事件都会挂载在红黑树中,如此,重复添加的事件就可以通过红黑树而高效的识别出来(红黑树的插入时间效率是lgn,其中n为树的高度)。

    而所有添加到epoll中的事件都会与设备(网卡)驱动程序建立回调关系,也就是说,当相应的事件发生时会调用这个回调方法。这个回调方法在内核中叫ep_poll_callback,它会将发生的事件添加到rdlist双链表中。

    在epoll中,对于每一个事件,都会建立一个epitem结构体,如下所示:

    复制代码
    struct epitem{  
        struct rb_node  rbn;//红黑树节点  
        struct list_head    rdllink;//双向链表节点  
        struct epoll_filefd  ffd;  //事件句柄信息  
        struct eventpoll *ep;    //指向其所属的eventpoll对象  
        struct epoll_event event; //期待发生的事件类型  
    }
    复制代码

    当调用epoll_wait检查是否有事件发生时,只需要检查eventpoll对象中的rdlist双链表中是否有epitem元素即可。如果rdlist不为空,则把发生的事件复制到用户态,同时将事件数量返回给用户。

    从上面的讲解可知:通过红黑树和双链表数据结构,并结合回调机制,造就了epoll的高效。

    OK,讲解完了Epoll的机理,我们便能很容易掌握epoll的用法了。一句话描述就是:三步曲。

    第一步:epoll_create()系统调用。此调用返回一个句柄,之后所有的使用都依靠这个句柄来标识。

    第二步:epoll_ctl()系统调用。通过此调用向epoll对象中添加、删除、修改感兴趣的事件,返回0标识成功,返回-1表示失败。

    第三部:epoll_wait()系统调用。通过此调用收集收集在epoll监控中已经发生的事件。

  • 相关阅读:
    .NETCore 之 中间件 02
    .NETCore 之 中间件 01
    .NetCore 之AOP扩展ExceptionFilter
    Unity ICO
    CentOS7离线安装Mysql8.0
    CentOS7离线安装devtoolset-9并编译redis6.0.5
    Centos7离线安装gcc4.8
    C#进行图片压缩(对jpg压缩效果最好)
    实现ASP.Net Core3.1运行在DockeDesktop下并用Nginx实现负载均衡
    WPF实现TextBlock呼吸灯效果
  • 原文地址:https://www.cnblogs.com/sharing-java/p/10796899.html
Copyright © 2011-2022 走看看