zoukankan      html  css  js  c++  java
  • Handler,Looper,MessageQueue流程梳理

    目的:handle的出现主要是为了解决线程间通讯。

      举个例子,android是不允许在主线程中访问网络,因为这样会阻塞主线程,影响性能,所以访问网络都是放在子线程中执行,对于网络返回的结果则需要显示在主线程中,handler就是连接主线程和子线程的桥梁。

    1.handler基本使用方法

      看一下使用方法:

     public static final int EMPTY_MSG = 0;
        @SuppressLint("HandlerLeak")
        Handler handler = new Handler(){
            @Override
            public void handleMessage(Message msg) {
                switch (msg.what){
                    case 0:
                        Toast.makeText(MainActivitys.this, "接受到消息", Toast.LENGTH_SHORT).show();
                        break;
                }
            }
        };
        @Override
        protected void onCreate(@Nullable Bundle savedInstanceState) {
            super.onCreate(savedInstanceState);
            setContentView(R.layout.activity_main);
    
            new Thread(new Runnable() {
                @Override
                public void run() {
                    handler.sendEmptyMessage(0);
                }
            }).start();
        }

      通过上边代码就完成了子线程向主线程发送消息的功能。

    2. handler,Looper,MessageQueue 解释

      handler:负责发送和处理消息

      Looper:消息循环器,也可以理解为消息泵,主动地获取消息,并交给handler来处理

      MessageQueue:消息队列,用来存储消息

    3.源码分析

      程序的启动是在ActivityThread的main方法中

    public static void main(){
       Looper.prepare(); //1
       Handler handler = new Handler();//2
       Looper.loop();      //3
    }

      Looper.prepare()会初始化当前线程的looper

     private static void prepare(boolean quitAllowed) {
            if (sThreadLocal.get() != null) {
                throw new RuntimeException("Only one Looper may be created per thread");
            }
            sThreadLocal.set(new Looper(quitAllowed));
        }

      会调用到sThreadLocal.set()方法,ThreadLocal是线程安全的,不同的线程获取到的值是不一样的,下面先分析一下ThreadLocal是如何做到线程安全。

        public void set(T value) {
            Thread t = Thread.currentThread();
            ThreadLocalMap map = getMap(t);
            if (map != null)
                map.set(this, value);
            else
                createMap(t, value);
        }

      不同的线程会设置不同的looper,下面看一下ThreadLocalMap是如何存储数据的

      

     ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
          table = new Entry[INITIAL_CAPACITY];
          int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
          table[i] = new Entry(firstKey, firstValue);    
    }

      ThreadLocalMap会创建一个数组,key是通过特殊的算法来创建出来,一个线程中会有一个ThreadLocalMap,这个map中会存多个ThreadLocal和values。

      下面看下ThreadLocalMap是如何set一个值的

      

    private void set(ThreadLocal key, Object value) {
    
                // We don't use a fast path as with get() because it is at
                // least as common to use set() to create new entries as
                // it is to replace existing ones, in which case, a fast
                // path would fail more often than not.
    
                Entry[] tab = table;
                int len = tab.length;
                int i = key.threadLocalHashCode & (len-1);
    
                for (Entry e = tab[i];
                     e != null;
                     e = tab[i = nextIndex(i, len)]) {
                    ThreadLocal k = e.get();
    
                    if (k == key) {
                        e.value = value;
                        return;
                    }
    
                    if (k == null) {
                        replaceStaleEntry(key, value, i);
                        return;
                    }
                }
    
                tab[i] = new Entry(key, value);
                int sz = ++size;
                if (!cleanSomeSlots(i, sz) && sz >= threshold)
                    rehash();
            }

      其实是遍历threadLocalMap中的table,如果当前table中存在threadLocal这个key就更新,不存在就新建。ThreadLocal的set方法到此结束。

      下面看下Handler handler = new Handler()中执行了哪些操作:

      public Handler(Callback callback, boolean async) {
            mLooper = Looper.myLooper();
            mQueue = mLooper.mQueue;
          
        }

      重要的就是构造函数中这两个方法,在handler中初始化looper和messageQueue。这个就不展开讲了。

      

      下面看一下Looper.loop()这个步骤,我做了一些精简,把无关的代码去掉了。

       public static void loop() {
            final Looper me = myLooper();
            final MessageQueue queue = me.mQueue;
    
            for (;;) {
                Message msg = queue.next(); // might block
                if (msg == null) {
                    // No message indicates that the message queue is quitting.
                    return;
                }
                msg.target.dispatchMessage(msg);
                msg.recycleUnchecked();
            }
        }

      queue.next()是个无限for循环,其实也是个阻塞方法,其中比较重要的是下面这个方法,其作用是不会一直循环。底层采用的是pipe/epoll机制。

    nativePollOnce(ptr, nextPollTimeoutMillis);
     Message next() {
            // Return here if the message loop has already quit and been disposed.
            // This can happen if the application tries to restart a looper after quit
            // which is not supported.
            final long ptr = mPtr;
            if (ptr == 0) {
                return null;
            }
    
            int pendingIdleHandlerCount = -1; // -1 only during first iteration
            int nextPollTimeoutMillis = 0;
            for (;;) {
                if (nextPollTimeoutMillis != 0) {
                    Binder.flushPendingCommands();
                }
    
                nativePollOnce(ptr, nextPollTimeoutMillis);
    
                synchronized (this) {
                    // Try to retrieve the next message.  Return if found.
                    final long now = SystemClock.uptimeMillis();
                    Message prevMsg = null;
                    Message msg = mMessages;
                    if (msg != null && msg.target == null) {
                        // Stalled by a barrier.  Find the next asynchronous message in the queue.
                        do {
                            prevMsg = msg;
                            msg = msg.next;
                        } while (msg != null && !msg.isAsynchronous());
                    }
                    if (msg != null) {
                        if (now < msg.when) {
                            // Next message is not ready.  Set a timeout to wake up when it is ready.
                            nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                        } else {
                            // Got a message.
                            mBlocked = false;
                            if (prevMsg != null) {
                                prevMsg.next = msg.next;
                            } else {
                                mMessages = msg.next;
                            }
                            msg.next = null;
                            if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                            msg.markInUse();
                            return msg;
                        }
                    } else {
                        // No more messages.
                        nextPollTimeoutMillis = -1;
                    }
    
                    // Process the quit message now that all pending messages have been handled.
                    if (mQuitting) {
                        dispose();
                        return null;
                    }
    
                    // If first time idle, then get the number of idlers to run.
                    // Idle handles only run if the queue is empty or if the first message
                    // in the queue (possibly a barrier) is due to be handled in the future.
                    if (pendingIdleHandlerCount < 0
                            && (mMessages == null || now < mMessages.when)) {
                        pendingIdleHandlerCount = mIdleHandlers.size();
                    }
                    if (pendingIdleHandlerCount <= 0) {
                        // No idle handlers to run.  Loop and wait some more.
                        mBlocked = true;
                        continue;
                    }
    
                    if (mPendingIdleHandlers == null) {
                        mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                    }
                    mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
                }
    
                // Run the idle handlers.
                // We only ever reach this code block during the first iteration.
                for (int i = 0; i < pendingIdleHandlerCount; i++) {
                    final IdleHandler idler = mPendingIdleHandlers[i];
                    mPendingIdleHandlers[i] = null; // release the reference to the handler
    
                    boolean keep = false;
                    try {
                        keep = idler.queueIdle();
                    } catch (Throwable t) {
                        Log.wtf(TAG, "IdleHandler threw exception", t);
                    }
    
                    if (!keep) {
                        synchronized (this) {
                            mIdleHandlers.remove(idler);
                        }
                    }
                }
    
                // Reset the idle handler count to 0 so we do not run them again.
                pendingIdleHandlerCount = 0;
    
                // While calling an idle handler, a new message could have been delivered
                // so go back and look again for a pending message without waiting.
                nextPollTimeoutMillis = 0;
            }
        }

       message.next()返回消息之后会接着调用 msg.target.dispatchMessage(msg);在这个方法里边会进行判断,来决定执行哪一种回调。

      

      public void dispatchMessage(Message msg) {
            if (msg.callback != null) {
                handleCallback(msg);
            } else {
                if (mCallback != null) {
                    if (mCallback.handleMessage(msg)) {
                        return;
                    }
                }
                handleMessage(msg);
            }
        }

    到此整个handler的流程就结束了。最后附上一张handler的时序图。

  • 相关阅读:
    项目经验:如何做到不和产品打起来
    leetcode-剑指30-OK
    leetcode-剑指05-OK
    leetcode-剑指58-OK
    leetcode-剑指28-OK
    leetcode-剑指53-I
    leetcode-剑指18-OK
    leetcode-剑指15-OK
    leetcode-剑指27-OK
    leetcode-剑指17-OK
  • 原文地址:https://www.cnblogs.com/sharkchao/p/10256098.html
Copyright © 2011-2022 走看看