zoukankan      html  css  js  c++  java
  • [LeetCode 115]

    问题

    给出字符串S和T,计算S中为T的不同的子序列的个数。

    一个字符串的子序列是一个由该原始字符串通过删除一些字母(也可以不删)但是不改变剩下字母的相对顺序产生的一个新字符串。如,ACE是ABCDE的一个子序列,但是AEC不是。

    这里有一个例子:

    S=“rabbbit”,T=“rabbit”

    返回值应为3

    初始思路

    要找出子序列的个数,首先要有找出S中为T的子序列的方法。T是S的子序列,首先其每一个字母肯定会在S中出现,通过遍历T的每一个字母即可完成这个检查。而根据不能乱序的要求,下一个字母在S中出现的位置不能在上一个字母在S中出现的位置之前。由此,我们得到下面的算法:

    循环遍历T

       如果当前字母在S中,而且在S中的位置大于前一个字母在S中的位置

          继续循环

       否则

          返回

    循环结束

    确认T为S的子序列

    上面的算法用来找S中存不存在唯一的T子序列没有问题,但是如果T中的字母在S中出现多次就不靠谱了。当T中字母多次出现在S时,意味着出现了分支。如S:doggy,T:dog。当我们遍历到g字母时,其实出现了取S中两个不同g字母的分支。看到分支,我们可以想到递归:把循环遍历T的过程改为递归,每次递归调用要处理的T的位置加1,递归结束条件为走到T的结尾。经过这样变化,每次递归条件达成意味着一个子序列出现,这样也达到了我们计算子序列个数的目的。

    查找子序列(T,要查找的字母在T中的位置,上一个字母在S中的位置)

       如果 要查找的字母在T中的位置 > T的长度

          子序列个数加1

          返回

       如果当前字母在S中

          循环遍历S中所有该字母的位置

             如果当前位置 <=  上一个字母在S中的位置

                继续循环

             查找子序列(T,要查找的字母在T中的位置 + 1, 当前位置)

    在上面的伪代码中,我们发现判断当前字母是否在S中并获取它在S中的位置这个功能将会被频繁调用。在具体实现时,我们应该联想到使用关联容器(如map)这种查找速度比较快的数据结构(用以字母为下标的数组也可以,查找速度更快。但是需要考虑大小写字母,非英文字母等情况)。字母可以作为关联容器的key,而一个存放位置信息的序列容器(如vector)可以作为关联容器的值。在进行正式计算前,先遍历S生成这个存放信息的关联容器,这样以后我们就不再需要S本身了。最后得到代码如下:

     1 class Solution {
     2     public:
     3         int numDistinct(std::string S, std::string T)
     4         {
     5             if(T.size() >= S.size())
     6             {
     7                 if(S == T)
     8                 {
     9                     return 1;
    10                 }
    11                 else
    12                 {
    13                     return 0;
    14                 }
    15             }
    16             
    17             positionInfo_.clear();
    18             count_ = 0;
    19             
    20             for(int i = 0; i < S.size(); ++i)
    21             {
    22                 if(positionInfo_.find(S[i]) == positionInfo_.end())
    23                 {
    24                     positionInfo_[S[i]] = {i};
    25                 }
    26                 else
    27                 {
    28                     positionInfo_[S[i]].push_back(i);
    29                 }
    30             }
    31             
    32             FindDistinct(T, 0, -1);
    33             
    34             return count_;
    35         }
    36         
    37     private:
    38         
    39         void FindDistinct(std::string& T, int pos, int previousPosInS)
    40         {
    41             if(pos > T.size() - 1)
    42             {
    43                 ++count_;
    44                 return;
    45             }
    46             
    47             const auto iter = positionInfo_.find(T[pos]);
    48             
    49             for(auto posIter = iter->second.begin(); posIter != iter->second.end(); ++posIter)
    50             {
    51                 if(*posIter <= previousPosInS)
    52                 {
    53                     continue;
    54                 }
    55                 
    56                 FindDistinct(T, pos + 1, *posIter);
    57             }
    58         }
    59         
    60         std::map<char, std::vector<int>> positionInfo_;
    61         
    62         int count_;
    63     };
    numDistinct

    提交后Judge Small顺利通过,但是Judge Large超时了。

    优化

    针对递归计算的优化方法,通过以前题目的分析我们应该比较有经验了:无非就是通过缓存计算结果避免在递归分支中的重复计算。让我们用例子中的S和T来看看递归过程:

    可以看到从T的pos为4的地方存在重复计算,由rab1b2已经可以知道取i后只有1种子序列了。这样看起来似乎可以用T的pos作为key,在rab1b2的递归序列中纪录count[4]=1。随后在rab1b3的递归中到达pos3层后不用继续递归pos4层即可查表得到本次的子序列数1,看起来似乎没有问题。但是当我们回到pos为2的rab1时,就可以发现隐藏的错误了,此时我们记录count[3]=2。紧接着我们开始处理pos2层的rab2的递归,经过查表得到子序列个数为count[3]=2。这显然是错误的,rab2继续递归并没有两种子序列。

    分析一下错误的原因,我们发现其实某点开始的子序列的个数不但和当时T的位置有关,还和当时在S中选取的字母在S中的位置有关。因此处理完rab1递归时我们的缓存应该为count[2, 2] = 2(2为第一个b在S中的位置)。这样在处理rab2时,[2,3]是没有缓存的,我们通过递归可以得到正确的值1。而前面提到的count[4]=1的缓存变为count[4, 5]=1(5为i在S中的位置),不会影响结果。

    现在可以开始实现代码了,由于需要缓存数据,我们得在原来基础上做一些小修改,不再使用成员变量纪录子序列个数,而是使用返回值。这样子才有办法缓存不同递归序列中的中间结果。至于缓存,使用一个std::map<std::pair<int, int>, int>即可。完成后的代码如下:

     1 class SolutionV3 {
     2     public:
     3         int numDistinct(std::string S, std::string T)
     4         {
     5             if(T.size() >= S.size())
     6             {
     7                 if(S == T)
     8                 {
     9                     return 1;
    10                 }
    11                 else
    12                 {
    13                     return 0;
    14                 }
    15             }
    16             
    17             positionInfo_.clear();
    18             cachedResult_.clear();
    19             
    20             for(int i = 0; i < S.size(); ++i)
    21             {
    22                 if(positionInfo_.find(S[i]) == positionInfo_.end())
    23                 {
    24                     positionInfo_[S[i]] = {i};
    25                 }
    26                 else
    27                 {
    28                     positionInfo_[S[i]].push_back(i);
    29                 }
    30             }
    31             
    32             return FindDistinct(T, 0, -1);
    33         }
    34         
    35     private:
    36         
    37         
    38         int FindDistinct(std::string& T, int pos, int posInS)
    39         {
    40             if(pos > T.size() - 1)
    41             {
    42                 return 1;
    43             }
    44             
    45             
    46             int count = 0;
    47             int result = 0;
    48 
    49             
    50             const auto iter = positionInfo_.find(T[pos]);
    51             
    52             
    53             for(auto posIter = iter->second.begin(); posIter != iter->second.end(); ++posIter)
    54             {
    55                 if(*posIter <= posInS)
    56                 {
    57                     continue;
    58                 }
    59                 
    60                 CacheKey cacheKey(pos, *posIter);
    61                 
    62                 if(cachedResult_.find(cacheKey) != cachedResult_.end())
    63                 {
    64                     count += cachedResult_[cacheKey];
    65                     continue;
    66                 }
    67                 
    68                 result = FindDistinct(T, pos + 1, *posIter);
    69                 cachedResult_[cacheKey] = result;
    70                 count += result;
    71             }
    72             
    73             return count;
    74         }
    75         
    76         std::map<char, std::vector<int>> positionInfo_;
    77         
    78         std::map<std::pair<int, int>, int> cachedResult_;
    79         
    80         typedef std::pair<int, int> CacheKey;
    81     };
    numDistinct_cached

    顺利通过Judge Large。

  • 相关阅读:
    laravel 解决保存Emoji 表情问题
    下载微信头像下载不了
    微信公众号开发遇到simplexml_load_string 未定义
    部署php的正确姿势
    ubuntu 安装 mysql 的正确姿势
    laravel 部署 前后端分离
    nwjs 解决手指可滑动问题
    Java8新特性Optional、接口中的默认方法与静态方法
    Java设计模式百例
    一位资深程序员大牛给予Java初学者的学习路线建议
  • 原文地址:https://www.cnblogs.com/shawnhue/p/leetcode_115.html
Copyright © 2011-2022 走看看